Python 利用神经网络模型和SVM模型预测bankloan.xls
部分bankloan数据如下:
1.利用神经网络模型预测
import pandas as pd import numpy as np from keras.models import Sequential from keras.layers import Dense,Dropout # 参数初始化 inputfile = r'C:\Users\22977\Desktop\Study\pythonData\data\data\bankloan.xls' data = pd.read_excel(inputfile) # 导入数据 x = data.iloc[:,:8] y = data.iloc[:,8] model = Sequential() model.add(Dense(64,input_dim=8,activation='relu')) # Drop防止过拟合的数据处理方式 model.add(Dropout(0.5)) model.add(Dense(64,activation='relu')) model.add(Dropout(0.5)) model.add(Dense(1,activation='sigmoid')) # 编译模型,定义损失函数,优化函数,绩效评估函数 model.compile(loss='mean_squared_error',optimizer='rmsprop',metrics=['accuracy']) # 导入数据进行训练 model.fit(x,y,epochs=100,batch_size=128) # 模型评估 loss,accuracy = model.evaluate(x,y,batch_size=128) print("loss:{0},accuracy:{1}".format(loss,accuracy)) yp = model.predict(x) # 分类预测 yp=np.argmax(yp,axis=1) def cm_plot(y, yp): from sklearn.metrics import confusion_matrix #导入混淆矩阵函数 cm = confusion_matrix(y, yp) #混淆矩阵 import matplotlib.pyplot as plt #导入作图库 plt.matshow(cm, cmap=plt.cm.Greens) #画混淆矩阵图,配色风格使用cm.Greens,更多风格请参考官网。 plt.colorbar() #颜色标签 for x in range(len(cm)): #数据标签 for y in range(len(cm)): plt.annotate(cm[x,y], xy=(x, y), horizontalalignment='center', verticalalignment='center') plt.ylabel('True label') #坐标轴标签 plt.xlabel('Predicted label') #坐标轴标签 return plt cm_plot(y,yp).show() # 显示混淆矩阵可视化结果
结果如下:
混淆矩阵如下:
2.利用SVM预测
import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn import svm from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix #参数初始化 filename = r'C:\Users\22977\Desktop\Study\pythonData\data\data\bankloan.xls' data = pd.read_excel(filename) x = data.iloc[:,:8] y = data.iloc[:,8] x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=100) svm_clf = svm.SVC() svm_clf.fit(x_train, y_train) #svm得分 yp = svm_clf.predict(x) score = accuracy_score(y, yp) print("SVM得分:",score) #混淆矩阵 plt.title('SVM') cm = confusion_matrix(y, yp) heatmap = sns.heatmap(cm, annot=True, fmt='d') heatmap.yaxis.set_ticklabels(heatmap.yaxis.get_ticklabels(), rotation=0, ha='right') heatmap.xaxis.set_ticklabels(heatmap.xaxis.get_ticklabels(), rotation=45, ha='right') plt.ylabel("True label") plt.xlabel("Predict label")
结果如下:
混淆矩阵如下: