Python基于数据挖掘的银行风控模型的建立
1.BP神经网络
数据可视化
import pandas as pd from keras.models import Sequential from keras.layers.core import Dense, Activation import numpy as np # 参数初始化 inputfile = 'E:/Python/bankloan.xls' data = pd.read_excel(inputfile) x_test = data.iloc[:,:8].values y_test = data.iloc[:,8].values
import pandas as pd from keras.models import Sequential from keras.layers.core import Dense, Activation import numpy as np # 参数初始化 inputfile = 'E:/Python/bankloan.xls' data = pd.read_excel(inputfile) x_test = data.iloc[:,:8].values y_test = data.iloc[:,8].values inputfile = 'E:/Python/bankloan.xls' data = pd.read_excel(inputfile) x_test = data.iloc[:,:8].values y_test = data.iloc[:,8].values model = Sequential() # 建立模型 model.add(Dense(input_dim = 8, units = 8)) model.add(Activation('relu')) # 用relu函数作为激活函数,能够大幅提供准确度 model.add(Dense(input_dim = 8, units = 1)) model.add(Activation('sigmoid')) # 由于是0-1输出,用sigmoid函数作为激活函数 model.compile(loss = 'mean_squared_error', optimizer = 'adam') # 编译模型。由于我们做的是二元分类,所以我们指定损失函数为binary_crossentropy,以及模式为binary # 另外常见的损失函数还有mean_squared_error、categorical_crossentropy等,请阅读帮助文件。 # 求解方法我们指定用adam,还有sgd、rmsprop等可选 model.fit(x_test, y_test, epochs = 1000, batch_size = 10) predict_x=model.predict(x_test) classes_x=np.argmax(predict_x,axis=1) yp = classes_x.reshape(len(y_test)) def cm_plot(y, yp): from sklearn.metrics import confusion_matrix cm = confusion_matrix(y, yp) import matplotlib.pyplot as plt plt.matshow(cm, cmap=plt.cm.Greens) plt.colorbar() for x in range(len(cm)): for y in range(len(cm)): plt.annotate(cm[x,y], xy=(x, y), horizontalalignment='center', verticalalignment='center') plt.ylabel('True label') plt.xlabel('Predicted label') return plt cm_plot(y_test,yp).show()# 显示混淆矩阵可视化结果
2.SVM支持向量机
import pandas as pd import numpy as np # 参数初始化 from sklearn import svm from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix from matplotlib import pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split data_load = "E:/Python/bankloan.xls" data = pd.read_excel(data_load) data.describe() data.columns data.index ## 转为np 数据切割 X = np.array(data.iloc[:,0:-1]) y = np.array(data.iloc[:,-1]) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1, train_size=0.8, test_size=0.2, shuffle=True) svm = svm.SVC() svm.fit(X_test,y_test) y_pred = svm.predict(X_test) accuracy_score(y_test, y_pred) print(accuracy_score(y_test, y_pred)) cm = confusion_matrix(y_test, y_pred) heatmap = sns.heatmap(cm, annot=True, fmt='d') heatmap.yaxis.set_ticklabels(heatmap.yaxis.get_ticklabels(), rotation=0, ha='right') heatmap.xaxis.set_ticklabels(heatmap.xaxis.get_ticklabels(), rotation=45, ha='right') plt.ylabel("true label") plt.xlabel("predict label") plt.show()
3.决策树
import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier as DTC from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score import time start_time = time.time() filePath = 'E:/Python/bankloan.xls' data = pd.read_excel(filePath) x = data.iloc[:,:8] y = data.iloc[:,8] x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=100) #模型 dtc_clf = DTC(criterion='entropy')#决策树 #训练 dtc_clf.fit(x_train,y_train) #模型评价 dtc_yp = dtc_clf.predict(x) dtc_score = accuracy_score(y, dtc_yp) score = {"决策树得分":dtc_score} score = sorted(score.items(),key = lambda score:score[0],reverse=True) print(pd.DataFrame(score)) #中文标签、负号正常显示 plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False #绘制混淆矩阵 figure = plt.subplots(figsize=(12,10)) plt.title('决策树') dtc_cm = confusion_matrix(y, dtc_yp) heatmap = sns.heatmap(dtc_cm, annot=True, fmt='d') heatmap.yaxis.set_ticklabels(heatmap.yaxis.get_ticklabels(), rotation=0, ha='right') heatmap.xaxis.set_ticklabels(heatmap.xaxis.get_ticklabels(), rotation=45, ha='right') plt.ylabel("true label") plt.xlabel("predict label") plt.show() end_time = time.time() run_time = end_time-start_time#运行时间 print('模型运行时间:{}'.format(run_time)) print('模型损失值:{}'.format(loss)) print('模型精度:{}'.format(binary_accuracy))
运行结果