常用排序算法总结(一)
目录
- 冒泡排序
- 鸡尾酒排序
- 选择排序
- 插入排序
- 二分插入排序
- 希尔排序
- 归并排序
- 堆排序
- 快速排序
我们通常所说的排序算法往往指的是内部排序算法,即数据记录在内存中进行排序。
排序算法大体可分为两种:
一种是比较排序,时间复杂度O(nlogn) ~ O(n^2),主要有:冒泡排序,选择排序,插入排序,归并排序,堆排序,快速排序等。
另一种是非比较排序,时间复杂度可以达到O(n),主要有:计数排序,基数排序,桶排序等。
这里我们来探讨一下常用的比较排序算法,非比较排序算法将在下一篇文章中介绍。下表给出了常见比较排序算法的性能:
有一点我们很容易忽略的是排序算法的稳定性(腾讯校招2016笔试题曾考过)。
排序算法稳定性的简单形式化定义为:如果Ai = Aj,排序前Ai在Aj之前,排序后Ai还在Aj之前,则称这种排序算法是稳定的。通俗地讲就是保证排序前后两个相等的数的相对顺序不变。
对于不稳定的排序算法,只要举出一个实例,即可说明它的不稳定性;而对于稳定的排序算法,必须对算法进行分析从而得到稳定的特性。需要注意的是,排序算法是否为稳定的是由具体算法决定的,不稳定的算法在某种条件下可以变为稳定的算法,而稳定的算法在某种条件下也可以变为不稳定的算法。
例如,对于冒泡排序,原本是稳定的排序算法,如果将记录交换的条件改成A[i] >= A[i + 1],则两个相等的记录就会交换位置,从而变成不稳定的排序算法。
其次,说一下排序算法稳定性的好处。排序算法如果是稳定的,那么从一个键上排序,然后再从另一个键上排序,前一个键排序的结果可以为后一个键排序所用。基数排序就是这样,先按低位排序,逐次按高位排序,低位排序后元素的顺序在高位也相同时是不会改变的。
博文。
堆排序(Heap Sort)
堆排序是指利用堆这种数据结构所设计的一种选择排序算法。堆是一种近似完全二叉树的结构(通常堆是通过一维数组来实现的),并满足性质:以最大堆(也叫大根堆、大顶堆)为例,其中父结点的值总是大于它的孩子节点。
我们可以很容易的定义堆排序的过程:
- 由输入的无序数组构造一个最大堆,作为初始的无序区
- 把堆顶元素(最大值)和堆尾元素互换
- 把堆(无序区)的尺寸缩小1,并调用heapify(A, 0)从新的堆顶元素开始进行堆调整
- 重复步骤2,直到堆的尺寸为1
堆排序的代码如下:
#include// 分类 -------------- 内部比较排序 // 数据结构 ---------- 数组 // 最差时间复杂度 ---- O(nlogn) // 最优时间复杂度 ---- O(nlogn) // 平均时间复杂度 ---- O(nlogn) // 所需辅助空间 ------ O(1) // 稳定性 ------------ 不稳定 void Swap(int A[], int i, int j) { int temp = A[i]; A[i] = A[j]; A[j] = temp; } void Heapify(int A[], int i, int size) // 从A[i]向下进行堆调整 { int left_child = 2 * i + 1; // 左孩子索引 int right_child = 2 * i + 2; // 右孩子索引 int max = i; // 选出当前结点与其左右孩子三者之中的最大值 if (left_child < size && A[left_child] > A[max]) max = left_child; if (right_child < size && A[right_child] > A[max]) max = right_child; if (max != i) { Swap(A, i, max); // 把当前结点和它的最大(直接)子节点进行交换 Heapify(A, max, size); // 递归调用,继续从当前结点向下进行堆调整 } } int BuildHeap(int A[], int n) // 建堆,时间复杂度O(n) { int heap_size = n; for (int i = heap_size / 2 - 1; i >= 0; i--) // 从每一个非叶结点开始向下进行堆调整 Heapify(A, i, heap_size); return heap_size; } void HeapSort(int A[], int n) { int heap_size = BuildHeap(A, n); // 建立一个最大堆 while (heap_size > 1) // 堆(无序区)元素个数大于1,未完成排序 { // 将堆顶元素与堆的最后一个元素互换,并从堆中去掉最后一个元素 // 此处交换操作很有可能把后面元素的稳定性打乱,所以堆排序是不稳定的排序算法 Swap(A, 0, --heap_size); Heapify(A, 0, heap_size); // 从新的堆顶元素开始向下进行堆调整,时间复杂度O(logn) } } int main() { int A[] = { 5, 2, 9, 4, 7, 6, 1, 3, 8 };// 从小到大堆排序 int n = sizeof(A) / sizeof(int); HeapSort(A, n); printf("堆排序结果:"); for (int i = 0; i < n; i++) { printf("%d ", A[i]); } printf("\n"); return 0; }
堆排序算法的演示:
动画中在排序过程之前简单的表现了创建堆的过程以及堆的逻辑结构。
堆排序是不稳定的排序算法,不稳定发生在堆顶元素与A[i]交换的时刻。
比如序列:{ 9, 5, 7, 5 },堆顶元素是9,堆排序下一步将9和第二个5进行交换,得到序列 { 5, 5, 7, 9 },再进行堆调整得到{ 7, 5, 5, 9 },重复之前的操作最后得到{ 5, 5, 7, 9 }从而改变了两个5的相对次序。
快速排序(Quick Sort)
快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序n个元素要O(nlogn)次比较。在最坏状况下则需要O(n^2)次比较,但这种状况并不常见。事实上,快速排序通常明显比其他O(nlogn)算法更快,因为它的内部循环可以在大部分的架构上很有效率地被实现出来。
快速排序使用分治策略(Divide and Conquer)来把一个序列分为两个子序列。步骤为:
- 从序列中挑出一个元素,作为"基准"(pivot).
- 把所有比基准值小的元素放在基准前面,所有比基准值大的元素放在基准的后面(相同的数可以到任一边),这个称为分区(partition)操作。
- 对每个分区递归地进行步骤1~2,递归的结束条件是序列的大小是0或1,这时整体已经被排好序了。
快速排序的代码如下:
#include// 分类 ------------ 内部比较排序 // 数据结构 --------- 数组 // 最差时间复杂度 ---- 每次选取的基准都是最大(或最小)的元素,导致每次只划分出了一个分区,需要进行n-1次划分才能结束递归,时间复杂度为O(n^2) // 最优时间复杂度 ---- 每次选取的基准都是中位数,这样每次都均匀的划分出两个分区,只需要logn次划分就能结束递归,时间复杂度为O(nlogn) // 平均时间复杂度 ---- O(nlogn) // 所需辅助空间 ------ 主要是递归造成的栈空间的使用(用来保存left和right等局部变量),取决于递归树的深度,一般为O(logn),最差为O(n) // 稳定性 ---------- 不稳定 void Swap(int A[], int i, int j) { int temp = A[i]; A[i] = A[j]; A[j] = temp; } int Partition(int A[], int left, int right) // 划分函数 { int pivot = A[right]; // 这里每次都选择最后一个元素作为基准 int tail = left - 1; // tail为小于基准的子数组最后一个元素的索引 for (int i = left; i < right; i++) // 遍历基准以外的其他元素 { if (A[i] <= pivot) // 把小于等于基准的元素放到前一个子数组末尾 { Swap(A, ++tail, i); } } Swap(A, tail + 1, right); // 最后把基准放到前一个子数组的后边,剩下的子数组既是大于基准的子数组 // 该操作很有可能把后面元素的稳定性打乱,所以快速排序是不稳定的排序算法 return tail + 1; // 返回基准的索引 } void QuickSort(int A[], int left, int right) { if (left >= right) return; int pivot_index = Partition(A, left, right); // 基准的索引 QuickSort(A, left, pivot_index - 1); QuickSort(A, pivot_index + 1, right); } int main() { int A[] = { 5, 2, 9, 4, 7, 6, 1, 3, 8 }; // 从小到大快速排序 int n = sizeof(A) / sizeof(int); QuickSort(A, 0, n - 1); printf("快速排序结果:"); for (int i = 0; i < n; i++) { printf("%d ", A[i]); } printf("\n"); return 0; }
使用快速排序法对一列数字进行排序的过程:
快速排序是不稳定的排序算法,不稳定发生在基准元素与A[tail+1]交换的时刻。
比如序列:{ 1, 3, 4, 2, 8, 9, 8, 7, 5 },基准元素是5,一次划分操作后5要和第一个8进行交换,从而改变了两个元素8的相对次序。
Java系统提供的Arrays.sort函数。对于基础类型,底层使用快速排序。对于非基础类型,底层使用归并排序。请问是为什么?
答:这是考虑到排序算法的稳定性。对于基础类型,相同值是无差别的,排序前后相同值的相对位置并不重要,所以选择更为高效的快速排序,尽管它是不稳定的排序算法;而对于非基础类型,排序前后相等实例的相对位置不宜改变,所以选择稳定的归并排序。