Tensorflow 中(批量)读取数据的案列分析及TFRecord文件的打包与读取


内容概要:

单一数据读取方式:

  第一种:slice_input_producer()

# 返回值可以直接通过 Session.run([images, labels])查看,且第一个参数必须放在列表中,如[...]
[images, labels] = tf.train.slice_input_producer([images, labels], num_epochs=None, shuffle=True)

  第二种:string_input_producer()

# 需要定义文件读取器,然后通过读取器中的 read()方法来获取数据(返回值类型 key,value),再通过 Session.run(value)查看
file_queue = tf.train.string_input_producer(filename, num_epochs=None, shuffle=True)

reader = tf.WholeFileReader() # 定义文件读取器
key, value = reader.read(file_queue)    # key:文件名;value:文件中的内容

  !!!num_epochs=None,不指定迭代次数,这样文件队列中元素个数也不限定(None*数据集大小)。

  !!!如果不是None,则此函数创建本地计数器 epochs,需要使用local_variables_initializer()初始化局部变量

  !!!以上两种方法都可以生成文件名队列。

(随机)批量数据读取方式:

batchsize=2  # 每次读取的样本数量
tf.train.batch(tensors, batch_size=batchsize)
tf.train.shuffle_batch(tensors, batch_size=batchsize, capacity=batchsize*10, min_after_dequeue=batchsize*5) # capacity > min_after_dequeue

  !!!以上所有读取数据的方法,在Session.run()之前必须开启文件队列线程 tf.train.start_queue_runners()

 TFRecord文件的打包与读取

 一、单一数据读取方式

第一种:slice_input_producer()

def slice_input_producer(tensor_list, num_epochs=None, shuffle=True, seed=None, capacity=32, shared_name=None, name=None)

案例1:

import tensorflow as tf

images = ['image1.jpg', 'image2.jpg', 'image3.jpg', 'image4.jpg']
labels = [1, 2, 3, 4]

# [images, labels] = tf.train.slice_input_producer([images, labels], num_epochs=None, shuffle=True)

# 当num_epochs=2时,此时文件队列中只有 2*4=8个样本,所有在取第9个样本时会出错
# [images, labels] = tf.train.slice_input_producer([images, labels], num_epochs=2, shuffle=True)

data = tf.train.slice_input_producer([images, labels], num_epochs=None, shuffle=True)
print(type(data))   # 

with tf.Session() as sess:
    # sess.run(tf.local_variables_initializer())
    sess.run(tf.local_variables_initializer())
    coord = tf.train.Coordinator()  # 线程的协调器
    threads = tf.train.start_queue_runners(sess, coord)  # 开始在图表中收集队列运行器

    for i in range(10):
        print(sess.run(data))

    coord.request_stop()
    coord.join(threads)

"""
运行结果:
[b'image2.jpg', 2]
[b'image1.jpg', 1]
[b'image3.jpg', 3]
[b'image4.jpg', 4]
[b'image2.jpg', 2]
[b'image1.jpg', 1]
[b'image3.jpg', 3]
[b'image4.jpg', 4]
[b'image2.jpg', 2]
[b'image3.jpg', 3]
"""

  !!!slice_input_producer() 中的第一个参数需要放在一个列表中,列表中的每个元素可以是 List 或 Tensor,如 [images,labels],

  !!!num_epochs设置

 第二种:string_input_producer()

def string_input_producer(string_tensor, num_epochs=None, shuffle=True, seed=None, capacity=32, shared_name=None, name=None, cancel_op=None)

文件读取器

  不同类型的文件对应不同的文件读取器,我们称为 reader对象

  该对象的 read 方法自动读取文件,并创建数据队列,输出key/文件名,value/文件内容;

reader = tf.TextLineReader()      ### 一行一行读取,适用于所有文本文件

reader = tf.TFRecordReader() ### A Reader that outputs the records from a TFRecords file
reader = tf.WholeFileReader() ### 一次读取整个文件,适用图片

 案例2:读取csv文件

iimport tensorflow as tf

filename = ['data/A.csv', 'data/B.csv', 'data/C.csv']

file_queue = tf.train.string_input_producer(filename, shuffle=True, num_epochs=2)   # 生成文件名队列
reader = tf.WholeFileReader()           # 定义文件读取器(一次读取整个文件)
# reader = tf.TextLineReader()            # 定义文件读取器(一行一行的读)
key, value = reader.read(file_queue)    # key:文件名;value:文件中的内容
print(type(file_queue))

init = [tf.global_variables_initializer(), tf.local_variables_initializer()]
with tf.Session() as sess:
    sess.run(init)
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)
    try:
        while not coord.should_stop():
            for i in range(6):
                print(sess.run([key, value]))
            break
    except tf.errors.OutOfRangeError:
        print('read done')
    finally:
        coord.request_stop()
    coord.join(threads)

"""
reader = tf.WholeFileReader()           # 定义文件读取器(一次读取整个文件)
运行结果:
[b'data/C.csv', b'7.jpg,7\n8.jpg,8\n9.jpg,9\n']
[b'data/B.csv', b'4.jpg,4\n5.jpg,5\n6.jpg,6\n']
[b'data/A.csv', b'1.jpg,1\n2.jpg,2\n3.jpg,3\n']
[b'data/A.csv', b'1.jpg,1\n2.jpg,2\n3.jpg,3\n']
[b'data/B.csv', b'4.jpg,4\n5.jpg,5\n6.jpg,6\n']
[b'data/C.csv', b'7.jpg,7\n8.jpg,8\n9.jpg,9\n']
"""
"""
reader = tf.TextLineReader()           # 定义文件读取器(一行一行的读)
运行结果:
[b'data/B.csv:1', b'4.jpg,4']
[b'data/B.csv:2', b'5.jpg,5']
[b'data/B.csv:3', b'6.jpg,6']
[b'data/C.csv:1', b'7.jpg,7']
[b'data/C.csv:2', b'8.jpg,8']
[b'data/C.csv:3', b'9.jpg,9']
"""

案例3:读取图片(每次读取全部图片内容,不是一行一行)

import tensorflow as tf

filename = ['1.jpg', '2.jpg']
filename_queue = tf.train.string_input_producer(filename, shuffle=False, num_epochs=1)
reader = tf.WholeFileReader()              # 文件读取器
key, value = reader.read(filename_queue)   # 读取文件 key:文件名;value:图片数据,bytes

with tf.Session() as sess:
    tf.local_variables_initializer().run()
    coord = tf.train.Coordinator()      # 线程的协调器
    threads = tf.train.start_queue_runners(sess, coord)

    for i in range(filename.__len__()):
        image_data = sess.run(value)
        with open('img_%d.jpg' % i, 'wb') as f:
            f.write(image_data)
    coord.request_stop()
    coord.join(threads)

 二、(随机)批量数据读取方式:

  功能:shuffle_batch() 和 batch() 这两个API都是从文件队列中批量获取数据,使用方式类似;

案例4:slice_input_producer() 与 batch()

import tensorflow as tf
import numpy as np

images = np.arange(20).reshape([10, 2])
label = np.asarray(range(0, 10))
images = tf.cast(images, tf.float32)  # 可以注释掉,不影响运行结果
label = tf.cast(label, tf.int32)     # 可以注释掉,不影响运行结果

batchsize = 6   # 每次获取元素的数量
input_queue = tf.train.slice_input_producer([images, label], num_epochs=None, shuffle=False)
image_batch, label_batch = tf.train.batch(input_queue, batch_size=batchsize)

# 随机获取 batchsize个元素,其中,capacity:队列容量,这个参数一定要比 min_after_dequeue 大
# image_batch, label_batch = tf.train.shuffle_batch(input_queue, batch_size=batchsize, capacity=64, min_after_dequeue=10)

with tf.Session() as sess:
    coord = tf.train.Coordinator()      # 线程的协调器
    threads = tf.train.start_queue_runners(sess, coord)     # 开始在图表中收集队列运行器
    for cnt in range(2):
        print("第{}次获取数据,每次batch={}...".format(cnt+1, batchsize))
        image_batch_v, label_batch_v = sess.run([image_batch, label_batch])
        print(image_batch_v, label_batch_v, label_batch_v.__len__())

    coord.request_stop()
    coord.join(threads)

"""
运行结果:
第1次获取数据,每次batch=6...
[[ 0.  1.]
 [ 2.  3.]
 [ 4.  5.]
 [ 6.  7.]
 [ 8.  9.]
 [10. 11.]] [0 1 2 3 4 5] 6
第2次获取数据,每次batch=6...
[[12. 13.]
 [14. 15.]
 [16. 17.]
 [18. 19.]
 [ 0.  1.]
 [ 2.  3.]] [6 7 8 9 0 1] 6
"""

 案例5:从本地批量的读取图片 --- string_input_producer() 与 batch()

 1 import tensorflow as tf
 2 import glob
 3 import cv2 as cv
 4 
 5 def read_imgs(filename, picture_format, input_image_shape, batch_size=1):
 6     """
 7     从本地批量的读取图片
 8     :param filename: 图片路径(包括图片的文件名),[]
 9     :param picture_format: 图片的格式,如 bmp,jpg,png等; string
10     :param input_image_shape: 输入图像的大小; (h,w,c)或[]
11     :param batch_size: 每次从文件队列中加载图片的数量; int
12     :return: batch_size张图片数据, Tensor
13     """
14     global new_img
15     # 创建文件队列
16     file_queue = tf.train.string_input_producer(filename, num_epochs=1, shuffle=True)
17     # 创建文件读取器
18     reader = tf.WholeFileReader()
19     # 读取文件队列中的文件
20     _, img_bytes = reader.read(file_queue)
21     # print(img_bytes)    # Tensor("ReaderReadV2_19:1", shape=(), dtype=string)
22     # 对图片进行解码
23     if picture_format == ".bmp":
24         new_img = tf.image.decode_bmp(img_bytes, channels=1)
25     elif picture_format == ".jpg":
26         new_img = tf.image.decode_jpeg(img_bytes, channels=3)
27     else:
28         pass
29     # 重新设置图片的大小
30     # new_img = tf.image.resize_images(new_img, input_image_shape)
31     new_img = tf.reshape(new_img, input_image_shape)
32     # 设置图片的数据类型
33     new_img = tf.image.convert_image_dtype(new_img, tf.uint8)
34 
35     # return new_img
36     return tf.train.batch([new_img], batch_size)
37 
38 
39 def main():
40     image_path = glob.glob(r'F:\demo\FaceRecognition\人脸库\ORL\*.bmp')
41     image_batch = read_imgs(image_path, ".bmp", (112, 92, 1), 5)
42     print(type(image_batch))
43     # image_path = glob.glob(r'.\*.jpg')
44     # image_batch = read_imgs(image_path, ".jpg", (313, 500, 3), 1)
45 
46     sess = tf.Session()
47     sess.run(tf.local_variables_initializer())
48     tf.train.start_queue_runners(sess=sess)
49 
50     image_batch = sess.run(image_batch)
51     print(type(image_batch))    # 
52 
53     for i in range(image_batch.__len__()):
54         cv.imshow("win_"+str(i), image_batch[i])
55     cv.waitKey()
56     cv.destroyAllWindows()
57 
58 def start():
59     image_path = glob.glob(r'F:\demo\FaceRecognition\人脸库\ORL\*.bmp')
60     image_batch = read_imgs(image_path, ".bmp", (112, 92, 1), 5)
61     print(type(image_batch))    # 
62 
63 
64     with tf.Session() as sess:
65         sess.run(tf.local_variables_initializer())
66         coord = tf.train.Coordinator()      # 线程的协调器
67         threads = tf.train.start_queue_runners(sess, coord)     # 开始在图表中收集队列运行器
68         image_batch = sess.run(image_batch)
69         print(type(image_batch))    # 
70 
71         for i in range(image_batch.__len__()):
72             cv.imshow("win_"+str(i), image_batch[i])
73         cv.waitKey()
74         cv.destroyAllWindows()
75 
76         # 若使用 with 方式打开 Session,且没加如下2行语句,则会出错
77         # ERROR:tensorflow:Exception in QueueRunner: Enqueue operation was cancelled;
78         # 原因:文件队列线程还处于工作状态(队列中还有图片数据),而加载完batch_size张图片会话就会自动关闭,同时关闭文件队列线程
79         coord.request_stop()
80         coord.join(threads)
81 
82 
83 if __name__ == "__main__":
84     # main()
85     start()
从本地批量的读取图片案例

案列6:TFRecord文件打包与读取

 1 def write_TFRecord(filename, data, labels, is_shuffler=True):
 2     """
 3     将数据打包成TFRecord格式
 4     :param filename: 打包后路径名,默认在工程目录下创建该文件;String
 5     :param data: 需要打包的文件路径名;list
 6     :param labels: 对应文件的标签;list
 7     :param is_shuffler:是否随机初始化打包后的数据,默认:True;Bool
 8     :return: None
 9     """
10     im_data = list(data)
11     im_labels = list(labels)
12 
13     index = [i for i in range(im_data.__len__())]
14     if is_shuffler:
15         np.random.shuffle(index)
16 
17     # 创建写入器,然后使用该对象写入样本example
18     writer = tf.python_io.TFRecordWriter(filename)
19     for i in range(im_data.__len__()):
20         im_d = im_data[index[i]]    # im_d:存放着第index[i]张图片的路径信息
21         im_l = im_labels[index[i]]  # im_l:存放着对应图片的标签信息
22 
23         # # 获取当前的图片数据  方式一:
24         # data = cv2.imread(im_d)
25         # # 创建样本
26         # ex = tf.train.Example(
27         #     features=tf.train.Features(
28         #         feature={
29         #             "image": tf.train.Feature(
30         #                 bytes_list=tf.train.BytesList(
31         #                     value=[data.tobytes()])), # 需要打包成bytes类型
32         #             "label": tf.train.Feature(
33         #                 int64_list=tf.train.Int64List(
34         #                     value=[im_l])),
35         #         }
36         #     )
37         # )
38         # 获取当前的图片数据  方式二:相对于方式一,打包文件占用空间小了一半多
39         data = tf.gfile.FastGFile(im_d, "rb").read()
40         ex = tf.train.Example(
41             features=tf.train.Features(
42                 feature={
43                     "image": tf.train.Feature(
44                         bytes_list=tf.train.BytesList(
45                             value=[data])), # 此时的data已经是bytes类型
46                     "label": tf.train.Feature(
47                         int64_list=tf.train.Int64List(
48                             value=[im_l])),
49                 }
50             )
51         )
52 
53         # 写入将序列化之后的样本
54         writer.write(ex.SerializeToString())
55     # 关闭写入器
56     writer.close()
TFRecord文件打包案列
 1 import tensorflow as tf
 2 import cv2
 3 
 4 def read_TFRecord(file_list, batch_size=10):
 5     """
 6     读取TFRecord文件
 7     :param file_list: 存放TFRecord的文件名,List
 8     :param batch_size: 每次读取图片的数量
 9     :return: 解析后图片及对应的标签
10     """
11     file_queue = tf.train.string_input_producer(file_list, num_epochs=None, shuffle=True)
12     reader = tf.TFRecordReader()
13     _, ex = reader.read(file_queue)
14     batch = tf.train.shuffle_batch([ex], batch_size, capacity=batch_size * 10, min_after_dequeue=batch_size * 5)
15 
16     feature = {
17         'image': tf.FixedLenFeature([], tf.string),
18         'label': tf.FixedLenFeature([], tf.int64)
19     }
20     example = tf.parse_example(batch, features=feature)
21 
22     images = tf.decode_raw(example['image'], tf.uint8)
23     images = tf.reshape(images, [-1, 32, 32, 3])
24 
25     return images, example['label']
26 
27 
28 
29 def main():
30     # filelist = ['data/train.tfrecord']
31     filelist = ['data/test.tfrecord']
32     images, labels = read_TFRecord(filelist, 2)
33     with tf.Session() as sess:
34         sess.run(tf.local_variables_initializer())
35         coord = tf.train.Coordinator()
36         threads = tf.train.start_queue_runners(sess=sess, coord=coord)
37 
38         try:
39             while not coord.should_stop():
40                 for i in range(1):
41                     image_bth, _ = sess.run([images, labels])
42                     print(_)
43 
44                     cv2.imshow("image_0", image_bth[0])
45                     cv2.imshow("image_1", image_bth[1])
46                 break
47         except tf.errors.OutOfRangeError:
48             print('read done')
49         finally:
50             coord.request_stop()
51         coord.join(threads)
52         cv2.waitKey(0)
53         cv2.destroyAllWindows()
54 
55 if __name__ == "__main__":
56     main()
TFReord文件的读取案列