《深度探索C++对象模型》第一章 | 关于对象
C++对象模式
非静态数据成员放置在每个类对象内,静态数据成员则被放置在所有类对象之外。静态和非静态的成员函数也被放置在所有类对象之外。每个类产生一堆指向虚函数的指针,放在虚表(vtbl)中。每个类对象维护一个指针(vptr),指向相关的虚表。虚表的首元素维护了每个类所关联的type_info
对象。
优点:空间与存取时间效率高
缺点:一旦所用到的类对象的非静态数据成员有所修改,那么代码就要重新编译
加上继承
C++支持单一继承、多重继承和虚拟继承。在虚拟继承的情况下,基类不管在继承链中被派生多少次,永远只会存在一个实体。
C++中凡是处于同一个访问控制修饰符下的数据,必定保证以其生命的次序出现在内存布局中。然而被放置在多个访问控制修饰符下的各笔数据,内存的排布顺序就不一定了。同样的道理,基类和派生类的内存布局也没有谁先谁后的强制规定。虚函数也会对内存布局产生影响。
对象的差异
只有通过指针或者引用间接处理基类对象,才能支持面向对象程序设计所需的多态性质。
C++以下列方法支持多态:
- 经由一组隐含的转化操作,例如把一个派生类指针转化为一个基类的指针
- 经由虚函数机制
- 经由
dynamic_cast
和typeid
运算符
类对象的内存
- 其非静态数据成员的总和
- 加上任何由于内存对齐而填补的空间
- 加上为了支持虚函数而内部产生的额外负担
void*
类型的指针只表示一个地址,不能够通过它操作所指的对象。类型转换其实是一种编译器指令,大部分情况下它不改变一个指针所含的真正地址,只影响“被指向的内存大小和其内容”的解释方式。
加上多态之后
class Bear : public ZooAnimal{
public:
Bear();
~Bear();
// ...
void rotate();
virtual void dance();
// ...
protected:
enum Dances { ... };
Dances dances_known;
int cell_block;
};
Bear b;
ZooAnimal *pz = &b;
Bear *pb = &b;
这两个指针都指向Bear
对象的首个字节,差别是pb
所涵盖的地址包含整个Bear
对象,而pz
所涵盖的地址只包含Bear
对象中的ZooAnimal
部分。除了ZooAnimal
对象中出现的成员,不能用pz
直接处理Bear
的任何成员,除非使用虚函数机制:
pz->cell_block; // 不合法
((Bear*)pz)->cell_block; // 合法
dynamic_cast(pz)->cell_block; // 合法
pb->cell_block; // 合法
当我们写下代码pz->rotate();
时,pz的类型将在编译期决定以下两点:
- 固定的可用接口,即
pz
只能调用ZooAnimal
的public
接口 - 该接口的访问权限
在执行期,pz
所指的对象类型可以决定rotate()
所调用的实体(即动态绑定)。类型信息的封装并不维护于pz
中,而是维护于对象的虚函数指针和该指针所指的虚表之间。
对于下面这种情况,为什么rotate()
所调用的是ZooAnimal
实体而不是Bear
实体呢?此外,如果初始化函数(赋值操作)将一个对象的内容完整地拷贝到另一个对象中,为什么za
的虚指针不指向Bear
的虚表呢?
Bear b;
ZooAnimal za = b; // 会引起切割
// 调用 ZooAnimal::rotate()
za.rotate();
因为za本身是一个ZooAnimal
对象而非Bear
对象,所以它并不能调用Bear
类型的方法。当一个基类对象被指定为派生类对象时,派生类就会被切割,以塞入较小的基类对象的内存中。因此,该基类对象就不能访问派生类的成员。而指针或者引用之所以支持多态,是因为它们不会引发内存中任何“与类型有关的内存委托操作”,改变的只是它们所指向的内存的“大小和内容解释方式”而已。
对于第二个问题,编译器在初始化和赋值操作之间做出了仲裁。编译器必须确保如果某个对象含有一个或一个以上的虚指针,那些虚指针的内容不会被基类对象初始化或改变。