bool cmp(int i, int k, int now)
{
if (fabs(fabs(a[i][k]) - fabs(a[now][k])) > eps)//不相等,将大的放上面
return fabs(a[i][k]) > fabs(a[now][k]);
for (re j = k + 1; j <= n; j++)//相等后,找到第一个不等的,将小的放上面
if (fabs(fabs(a[i][j]) - fabs(a[now][j])) > eps)
return fabs(a[i][j]) < fabs(a[now][j]);
return false;
}
void gauss()
{
for (re k = 1; k <= n; k++)//枚举对角线
{
int now_max = k;
for (re i = k + 1; i <= n; i++)//使得矩阵方程线性处理
if (cmp(i, k, now_max)) now_max = i;
swap(a[now_max], a[k]);
if (fabs(a[k][k]) < eps) continue;
for (re j = k + 1; k <= m; k++) a[k][j] /= a[k][k];//把当前x系数变为1
a[k][k] = 1.0;
for (re i = 1; i <= n; i++)
{
if (i == k) continue;
double ijk = a[i][k];//把同一列上其他x的系数变为0
for (re j = k; j <= m; j++) a[i][j] -= a[k][j] * ijk;
}
}
}
int judge()
{
for (re i = 1; i <= n; i++)
{
int tot = 0;
for (re j = 1; j <= n; j++)
if (fabs(a[i][j]) < eps) tot++;
if (tot == n)
{
if (fabs(a[i][m]) < eps) return 0;//无穷解
else return -1;//无解
}
}
for (re i = 1; i <= n; i++)//唯一解
printf("x%d = %.2lf\n", i, a[i][m]);
return 1;
}