回旋曲线的计算
%% 调用 clothoid函数,并将终点位置的曲率半径设置为 0.1:0.2:3 for i = 0.1:0.2:3 clothoid(i) end
%%%% 计算回旋曲线,并绘图 function [] = clothoid(Rmin) N = 100; %% sk = 2; %% 曲线长 c = 1 / Rmin / sk; %% 曲率变化率,即上文中的曲率变化率 a x = zeros(1,N); y = zeros(1,N); for sk_i = sk / N : sk / N : sk result_x = 0; %% 初始化x坐标点的值 result_y = 0; %% 初始化y坐标点的值 for i = 0 : N %% 计算x result_x = result_x + ((-1) ^ i) * (c ^ (2 * i)) * (sk_i ^ (4 * i + 1)) / ((2 ^ (2 * i)) * (4 * i + 1) * fctorial(2 * i)); end x(int32(sk_i / sk * N)) = result_x; for i = 0 : N %% 计算y result_y = result_y + ((-1) ^ i) * (c ^ (2 * i + 1)) * (sk_i ^ (4 * i + 3)) / ((2 ^ (2 * i + 1)) * (4 * i + 3) * fctorial(2 * i + 1)); end y(int32(sk_i / sk * N)) = result_y; end hold on; plot(-x,-y); hold on; plot(-x(end),-y(end),'*'); %%回旋曲线的最后一个点 axis equal; end