sequence的仲裁机制
概述
sequence可通过sequencer向drive发送你的待测case,如果一个sequencer只发送一个sequence是不需要仲裁的,但在实际使用中,如果一个sequencer接收了两个sequence或者更多的时候,会怎样发送各自sequence的case呢?如果你要发送的case需要存在同步关系,要怎么来做这样的同步关系呢?这个时候就能感受到uvm的强大了,可以使用的他的仲裁机制。总结了sequence的几种仲裁关系。
- 通过指定优先级决定仲裁
- 通过lock或者grap决定仲裁
- 通过is_relevant和对wait_for_relevant重载进行仲裁
- 通过virtual sequence和virtual sequencer进行复杂同步
指定sequence优先级
在sequence被启动是会自动执行它的body、pre_body和post_bosy三个任务,我们常用的是body任务。body任务中可以通过uvm_do_pri及uvm_do_pri_with改变所产生的transaction的优先级。uvm_do_pri与uvm_do_pri_with的第二个参数是优先级, 这个数值必须是一个大于等于-1的整数。 数字越大, 优先级越高。
在默认情况下sequencer的仲裁算法是SEQ_ARB_FIFO。 它会严格遵循先入先出的顺序, 而不会考虑优先级。SEQ_ARB_WEIGHTED是加权的仲裁;SEQ_ARB_RANDOM是完全随机选择; SEQ_ARB_STRICT_FIFO是严格按照优先级的,当有多个同一优先级的sequence时, 按照先入先出的顺序选择; SEQ_ARB_STRICT_RANDOM是严格按照优先级的, 当有多个同一优先级的sequence时, 随机从最高优先级中选择; SEQ_ARB_USER则是用户可以自定义一种新的仲裁算法。因此, 若想使优先级起作用, 应该设置仲裁算法为SEQ_ARB_STRICT_FIFO或者SEQ_ARB_STRICT_RANDOM。
如下面的这段代码指定了sequence0的优先级为100,sequence1的优先级为200,sequence1的优先级高于sequence0的优先级,同事设定了sequencer采用优先级仲裁机制,这样则会将sequence1的transcation都发送完成后再发送sequence0的transaction。对sequence设置优先级的本质即设置其内产生的transaction的优先级。
`ifndef MY_CASE0__SV
`define MY_CASE0__SV
class sequence0 extends uvm_sequence #(my_transaction);
my_transaction m_trans;
function new(string name= "sequence0");
super.new(name);
endfunction
virtual task body();
if(starting_phase != null)
starting_phase.raise_objection(this);
repeat (5) begin
`uvm_do_pri(m_trans, 100)
`uvm_info("sequence0", "send one transaction", UVM_MEDIUM)
end
#100;
if(starting_phase != null)
starting_phase.drop_objection(this);
endtask
`uvm_object_utils(sequence0)
endclass
class sequence1 extends uvm_sequence #(my_transaction);
my_transaction m_trans;
function new(string name= "sequence1");
super.new(name);
endfunction
virtual task body();
if(starting_phase != null)
starting_phase.raise_objection(this);
repeat (5) begin
`uvm_do_pri_with(m_trans, 200, {m_trans.pload.size < 500;})
`uvm_info("sequence1", "send one transaction", UVM_MEDIUM)
end
#100;
if(starting_phase != null)
starting_phase.drop_objection(this);
endtask
`uvm_object_utils(sequence1)
endclass
class my_case0 extends base_test;
function new(string name = "my_case0", uvm_component parent = null);
super.new(name,parent);
endfunction
`uvm_component_utils(my_case0)
extern virtual task main_phase(uvm_phase phase);
endclass
task my_case0::main_phase(uvm_phase phase);
sequence0 seq0;
sequence1 seq1;
seq0 = new("seq0");
seq0.starting_phase = phase;
seq1 = new("seq1");
seq1.starting_phase = phase;
env.i_agt.sqr.set_arbitration(SEQ_ARB_STRICT_FIFO);
fork
seq0.start(env.i_agt.sqr);
seq1.start(env.i_agt.sqr);
join
endtask
`endif
lock和grap独占
lock和grap其实对sequence的仲裁是相似的,都是在lock/grap期间独占sequencer进行transaction传输,区别在于grab操作比lock操作优先级更高。 lock请求是被插入
sequencer仲裁队列的最后面, 等到它时, 它前面的仲裁请求都已经结束了。 grab请求则被放入sequencer仲裁队列的最前面, 它几乎是一发出就拥有了sequencer的所有权。如果是两个lock或者grap都试图独占sequencer,则先占用的发送完成再执行后占用的。这样前面说grap有比lock更高的优先级,如果发生在使用lock一个sequence独占sequencer发送transaction没有unlock时来了一个grap请求要怎么处理呢,这个时候grap会等lock的sequence执行完毕再执行自己的请求。
`ifndef MY_CASE0__SV
`define MY_CASE0__SV
class sequence0 extends uvm_sequence #(my_transaction);
my_transaction m_trans;
function new(string name= "sequence0");
super.new(name);
endfunction
virtual task body();
if(starting_phase != null)
starting_phase.raise_objection(this);
repeat (2) begin
`uvm_do(m_trans)
`uvm_info("sequence0", "send one transaction", UVM_MEDIUM)
end
lock();
`uvm_info("sequence0", "locked the sequencer ", UVM_MEDIUM)
repeat (5) begin
`uvm_do(m_trans)
`uvm_info("sequence0", "send one transaction", UVM_MEDIUM)
end
`uvm_info("sequence0", "unlocked the sequencer ", UVM_MEDIUM)
unlock();
repeat (2) begin
`uvm_do(m_trans)
`uvm_info("sequence0", "send one transaction", UVM_MEDIUM)
end
#100;
if(starting_phase != null)
starting_phase.drop_objection(this);
endtask
`uvm_object_utils(sequence0)
endclass
class sequence1 extends uvm_sequence #(my_transaction);
my_transaction m_trans;
function new(string name= "sequence1");
super.new(name);
endfunction
virtual task body();
if(starting_phase != null)
starting_phase.raise_objection(this);
repeat (3) begin
`uvm_do_with(m_trans, {m_trans.pload.size < 500;})
`uvm_info("sequence1", "send one transaction", UVM_MEDIUM)
end
lock();
`uvm_info("sequence1", "locked the sequencer ", UVM_MEDIUM)
repeat (4) begin
`uvm_do_with(m_trans, {m_trans.pload.size < 500;})
`uvm_info("sequence1", "send one transaction", UVM_MEDIUM)
end
`uvm_info("sequence1", "unlocked the sequencer ", UVM_MEDIUM)
unlock();
repeat (3) begin
`uvm_do_with(m_trans, {m_trans.pload.size < 500;})
`uvm_info("sequence1", "send one transaction", UVM_MEDIUM)
end
#100;
if(starting_phase != null)
starting_phase.drop_objection(this);
endtask
`uvm_object_utils(sequence1)
endclass
class my_case0 extends base_test;
function new(string name = "my_case0", uvm_component parent = null);
super.new(name,parent);
endfunction
`uvm_component_utils(my_case0)
extern virtual task main_phase(uvm_phase phase);
endclass
task my_case0::main_phase(uvm_phase phase);
sequence0 seq0;
sequence1 seq1;
seq0 = new("seq0");
seq0.starting_phase = phase;
seq1 = new("seq1");
seq1.starting_phase = phase;
fork
seq0.start(env.i_agt.sqr);
seq1.start(env.i_agt.sqr);
join
endtask
`endif
is_relevant和wait_for_relevant进行重载
可以对is_relevant和wait_for_relevant进行重载来决定仲裁。sequencer在仲裁时, 会查看sequence的is_relevant函数的返回结果。 如果为1, 说明此sequence有效, 否则无效。
class sequence0 extends uvm_sequence #(my_transaction);
my_transaction m_trans;
int num;
bit has_delayed;
function new(string name= "sequence0");
super.new(name);
num = 0;
has_delayed = 0;
endfunction
virtual function bit is_relevant();
if((num >= 3)&&(!has_delayed)) return 0;
else return 1;
endfunction
virtual task wait_for_relevant();
#10000;
has_delayed = 1;
endtask
virtual task body();
if(starting_phase != null)
starting_phase.raise_objection(this);
repeat (10) begin
num++;
`uvm_do(m_trans)
`uvm_info("sequence0", "send one transaction", UVM_MEDIUM)
end
#100;
if(starting_phase != null)
starting_phase.drop_objection(this);
endtask
`uvm_object_utils(sequence0)
endclass
virtual sequence和virtual sequencer
如果验证平台中存在两个agent,每个agent下的driver接收的sequence还需要保证一定的同步关系,这个时候就需要virtual sequence和virtual sequencer出马了。如果不适用virtual sequence还要保证drv0_seq和drv1_seq有同步关系,这个时候就需要引入全局变量来做同步了,但是如果是中间存在多次的同步,如sequence A要先执行, 之后是B, B执行后才能是C, C执行后才能是D, D执行后才能是E。 这依然可以使用上面的全局方法解决, 只是这会显得相当笨拙。这种情况下使用virtual sequence将非常方便。
`ifndef MY_CASE0__SV
`define MY_CASE0__SV
class drv0_seq extends uvm_sequence #(my_transaction);
my_transaction m_trans;
`uvm_object_utils(drv0_seq)
function new(string name= "drv0_seq");
super.new(name);
endfunction
virtual task body();
repeat (10) begin
`uvm_do(m_trans)
`uvm_info("drv0_seq", "send one transaction", UVM_MEDIUM)
end
endtask
endclass
class drv1_seq extends uvm_sequence #(my_transaction);
my_transaction m_trans;
`uvm_object_utils(drv1_seq)
function new(string name= "drv1_seq");
super.new(name);
endfunction
virtual task body();
repeat (10) begin
`uvm_do(m_trans)
`uvm_info("drv1_seq", "send one transaction", UVM_MEDIUM)
end
endtask
endclass
class case0_vseq extends uvm_sequence;
`uvm_object_utils(case0_vseq)
`uvm_declare_p_sequencer(my_vsqr)
function new(string name = "case0_vseq");
super.new(name);
endfunction
virtual task body();
my_transaction tr;
drv0_seq seq0;
drv1_seq seq1;
if(starting_phase != null)
starting_phase.raise_objection(this);
`uvm_do_on_with(tr, p_sequencer.p_sqr0, {tr.pload.size == 1500;})
`uvm_info("vseq", "send one longest packet on p_sequencer.p_sqr0", UVM_MEDIUM)
fork
`uvm_do_on(seq0, p_sequencer.p_sqr0);
`uvm_do_on(seq1, p_sequencer.p_sqr1);
join
#100;
if(starting_phase != null)
starting_phase.drop_objection(this);
endtask
endclass
class my_case0 extends base_test;
function new(string name = "my_case0", uvm_component parent = null);
super.new(name,parent);
endfunction
extern virtual function void build_phase(uvm_phase phase);
`uvm_component_utils(my_case0)
endclass
function void my_case0::build_phase(uvm_phase phase);
super.build_phase(phase);
uvm_config_db#(uvm_object_wrapper)::set(this,
"v_sqr.main_phase",
"default_sequence",
case0_vseq::type_id::get());
endfunction
`endif
在case0_vseq中, 先使用uvm_do_on_with在p_sequencer.sqr0上发送一个最长包, 当其发送完毕后, 再启动drv0_seq和drv1_seq。在使用uvm_do_on宏的情况下, 虽然seq0是在case0_vseq中启动, 但是它最终会被交给p_sequencer.p_sqr0, 也即env0.i_agt.sqr而不是v_sqr。 这个就是virtual sequence和virtual sequencer中virtual的来源。 它们各自并不产生transaction, 而只是控制其他的sequence为相应的sequencer产生transaction。 virtual sequence和virtual sequencer只是起一个调度的作用。 由于根本不直接产生transaction, 所以virtual sequence和virtual sequencer在定义时根本无需指明要发送的transaction数据类型。
virtual sequencer的代码使用为下面两图