siamRPN网络结构理解
siamRPN包含两个分支。
z->exemplar(1,3,127,127), x->instance(1,3,255,255)
**branch1:**
对z提取特征fz(AlexNet),并根据f计算分类和回归卷积核
fz shape->(1,256,6,6)
分类cls: fcls(fz)->(10,256,4,4) 得到k_cls
回归reg: freg(fz)->(20,256,4,4) 得到k_reg
**branch2:**
对x提取特征fx(AlexNet)
fx shape->(1,256,22,22)
分类cls: fcls2(fx)->(1,256,20,20) 得到x_cls
回归reg: fregs(fx)->(1,256,20,20) 得到x_reg
分别以k_cls和k_reg作为卷积核,x_cls和x_reg分别为对应的卷积图像,进行卷积操作,其中回归操作中多一个1x1卷积,用于修正回归结果
response_reg = conv1x1(conv(x_cls, k_cls)) shape->(1,20,17,17)
response_cls = conv(x_reg, k_reg) shape->(1,10,17,17)