ORM(Object Relational Mapping)
ORM的简绍
对象关系映射(英语:(Object Relational Mapping,简称ORM,或O/RM,或O/R mapping),是一种程序技术,用于实现面向对象编程语言里不同类型系统的数据之间的转换 。
从效果上说,它其实是创建了一个可在编程语言里使用的--"虚拟对象数据库"。 面向对象是从软件工程基本原则(如耦合、聚合、封装)的基础上发展起来的,而关系数据库则是从数学理论发展而来的,两套理论存在显著的区别。
为了解决这个不匹配的现象,对象关系映射技术应运而生。 对象关系映射(Object-Relational Mapping)提供了概念性的、易于理解的模型化数据的方法。ORM方法论基于三个核心原则: 简单:以最基本的形式建模数据。
传达性:数据库结构被任何人都能理解的语言文档化。
精确性:基于数据模型创建正确标准化的结构。
典型地,建模者通过收集来自那些熟悉应用程序但不熟练的数据建模者的人的信息开发信息模型。
建模者必须能够用非技术企业专家可以理解的术语在概念层次上与数据结构进行通讯。建模者也必须能以简单的单元分析信息,对样本数据进行处理。ORM专门被设计为改进这种联系。 简单的说:ORM相当于中继数据。具体到产品上,例如ADO.NET Entity Framework。DLINQ中实体类的属性[Table]就算是一种中继数据。
而我使用的主要是Django(今天简绍django中的ORM)
在django中使用mysql
DATABASES = { "default": { "ENGINE": "django.db.backends.mysql", "NAME": "你的数据库名称", # 需要自己手动创建数据库 "USER": "数据库用户名", "PASSWORD": "数据库密码", "HOST": "数据库IP", "POST": 3306 } }
字段:
AutoField(Field) - int自增列,必须填入参数 primary_key=True BigAutoField(AutoField) - bigint自增列,必须填入参数 primary_key=True 注:当model中如果没有自增列,则自动会创建一个列名为id的列 from django.db import models class UserInfo(models.Model): # 自动创建一个列名为id的且为自增的整数列 username = models.CharField(max_length=32) class Group(models.Model): # 自定义自增列 nid = models.AutoField(primary_key=True) name = models.CharField(max_length=32) SmallIntegerField(IntegerField): - 小整数 -32768 ~ 32767 PositiveSmallIntegerField(PositiveIntegerRelDbTypeMixin, IntegerField) - 正小整数 0 ~ 32767 IntegerField(Field) - 整数列(有符号的) -2147483648 ~ 2147483647 PositiveIntegerField(PositiveIntegerRelDbTypeMixin, IntegerField) - 正整数 0 ~ 2147483647 BigIntegerField(IntegerField): - 长整型(有符号的) -9223372036854775808 ~ 9223372036854775807 BooleanField(Field) - 布尔值类型 NullBooleanField(Field): - 可以为空的布尔值 CharField(Field) - 字符类型 - 必须提供max_length参数, max_length表示字符长度 TextField(Field) - 文本类型 EmailField(CharField): - 字符串类型,Django Admin以及ModelForm中提供验证机制 IPAddressField(Field) - 字符串类型,Django Admin以及ModelForm中提供验证 IPV4 机制 GenericIPAddressField(Field) - 字符串类型,Django Admin以及ModelForm中提供验证 Ipv4和Ipv6 - 参数: protocol,用于指定Ipv4或Ipv6, 'both',"ipv4","ipv6" unpack_ipv4, 如果指定为True,则输入::ffff:192.0.2.1时候,可解析为192.0.2.1,开启此功能,需要protocol="both" URLField(CharField) - 字符串类型,Django Admin以及ModelForm中提供验证 URL SlugField(CharField) - 字符串类型,Django Admin以及ModelForm中提供验证支持 字母、数字、下划线、连接符(减号) CommaSeparatedIntegerField(CharField) - 字符串类型,格式必须为逗号分割的数字 UUIDField(Field) - 字符串类型,Django Admin以及ModelForm中提供对UUID格式的验证 FilePathField(Field) - 字符串,Django Admin以及ModelForm中提供读取文件夹下文件的功能 - 参数: path, 文件夹路径 match=None, 正则匹配 recursive=False, 递归下面的文件夹 allow_files=True, 允许文件 allow_folders=False, 允许文件夹 FileField(Field) - 字符串,路径保存在数据库,文件上传到指定目录 - 参数: upload_to = "" 上传文件的保存路径 storage = None 存储组件,默认django.core.files.storage.FileSystemStorage ImageField(FileField) - 字符串,路径保存在数据库,文件上传到指定目录 - 参数: upload_to = "" 上传文件的保存路径 storage = None 存储组件,默认django.core.files.storage.FileSystemStorage width_field=None, 上传图片的高度保存的数据库字段名(字符串) height_field=None 上传图片的宽度保存的数据库字段名(字符串) DateTimeField(DateField) - 日期+时间格式 YYYY-MM-DD HH:MM[:ss[.uuuuuu]][TZ] DateField(DateTimeCheckMixin, Field) - 日期格式 YYYY-MM-DD TimeField(DateTimeCheckMixin, Field) - 时间格式 HH:MM[:ss[.uuuuuu]] DurationField(Field) - 长整数,时间间隔,数据库中按照bigint存储,ORM中获取的值为datetime.timedelta类型 FloatField(Field) - 浮点型 DecimalField(Field) - 10进制小数 - 参数: max_digits,小数总长度 decimal_places,小数位长度 BinaryField(Field) - 二进制类型 字段合集
字段参数:
null
用于表示某个字段可以为空。
unique
如果设置为unique=True 则该字段在此表中必须是唯一的 。
db_index
如果db_index=True,则代表这个字段设置数据库索引
default
设置默认值
auto_now_add auto_now 时间字段独有
配置auto_now_add=True,创建数据记录的时候会把当前时间添加到数据库。
配置上auto_now=True,每次更新数据记录的时候会更新该字段。
blank
如果为True,该字段允许不填,默认值为False要注意,
这与 null 不同。null纯粹是数据库范畴的,而 blank 是数据验证范畴的。
如果一个字段的blank=True,表单的验证将允许该字段是空值。如果字段的blank=False,该字段就是必填的。
choices
由二元组组成的一个可迭代对象(例如,列表或元组),用来给字段提供选择项。 如果设置了choices ,
默认的表单将是一个选择框而不是标准的文本框,而且这个选择框的选项就是choices 中的选项。
这是一个关于 choices 列表的例子: YEAR_IN_SCHOOL_CHOICES = ( ('FR', 'Freshman'), ('SO', 'Sophomore'), ('JR', 'Junior'), ('SR', 'Senior'), ('GR', 'Graduate'), ) 每个元组中的第一个元素,是存储在数据库中的值;第二个元素是在管理界面或 ModelChoiceField 中用作显示的内容。 在一个给定的 model 类的实例中,想得到某个 choices 字段的显示值,就调用 get_FOO_display 方法(这里的 FOO 就是 choices 字段的名称 )。例如: from django.db import models class Person(models.Model): SHIRT_SIZES = ( ('S', 'Small'), ('M', 'Medium'), ('L', 'Large'), ) name = models.CharField(max_length=60) shirt_size = models.CharField(max_length=1, choices=SHIRT_SIZES) >>> p = Person(name="Fred Flintstone", shirt_size="L") >>> p.save() >>> p.shirt_size 'L' >>> p.get_shirt_size_display() 'Large'
我们建立个表来具体说明:
class Author(models.Model): nid = models.AutoField(primary_key=True) name=models.CharField( max_length=32) age=models.IntegerField() # 与AuthorDetail建立一对一的关系 authorDetail=models.OneToOneField(to="AuthorDetail") class AuthorDetail(models.Model): nid = models.AutoField(primary_key=True) birthday=models.DateField() telephone=models.BigIntegerField() addr=models.CharField( max_length=64) class Publish(models.Model): nid = models.AutoField(primary_key=True) name=models.CharField( max_length=32) city=models.CharField( max_length=32) email=models.EmailField() class Book(models.Model): nid = models.AutoField(primary_key=True) title = models.CharField( max_length=32) publishDate=models.DateField() price=models.DecimalField(max_digits=5,decimal_places=2) keepNum=models.IntegerField()
commentNum=models.IntegerField() # 与Publish建立一对多的关系,外键字段建立在多的一方 publish=models.ForeignKey(to="Publish",to_field="nid") # 与Author表建立多对多的关系,ManyToManyField可以建在两个模型中的任意一个,自动创建第三张表 authors=models.ManyToManyField(to='Author')
注意事项:
1、 表的名称myapp_modelName
,是根据 模型中的元数据自动生成的,也可以覆写为别的名称
2、id
字段是自动添加的
3、对于外键字段,Django 会在字段名上添加"_id" 来创建数据库中的列名
4、每个字段有一些特有的参数,例如,CharField需要max_length参数来指定VARCHAR
数据库字段的大小。
5、django1.几版本来着和2点几版本的不同:必须指明 on_delete 这个属性 不然会报错
添加表记录
方式1 publish_obj=Publish(name="人民出版社",city="北京",email="renMin@163.com") publish_obj.save() # 将数据保存到数据库 方式2
返回值publish_obj是添加的记录对象 publish_obj=Publish.objects.create(name="人民出版社",city="北京",email="renMin@163.com")
方式3
表.objects.create(**request.POST.dict())
Django 里ORM的相关操作
all(): 查询所有结果 filter(**kwargs): 它包含了与所给筛选条件相匹配的对象 get(**kwargs): 返回与所给筛选条件相匹配的对象,返回结果有且只有一个,如果符合筛选条件的对象超过一个或者没有都会抛出错误。 exclude(**kwargs): 它包含了与所给筛选条件不匹配的对象 values(*field): 返回一个ValueQuerySet——一个特殊的QuerySet,运行后得到的并不是一系列model的实例化对象,而是一个可迭代的字典序列 values_list(*field): 它与values()非常相似,它返回的是一个元组序列,values返回的是一个字典序列 order_by(*field): 对查询结果排序 reverse(): 对查询结果反向排序,请注意reverse()通常只能在具有已定义顺序的QuerySet上调用(在model类的Meta中指定ordering或调用order_by()方法)。 distinct(): 从返回结果中剔除重复纪录(如果你查询跨越多个表,可能在计算QuerySet时得到重复的结果。此时可以使用distinct(),注意只有在PostgreSQL中支持按字段去重。) count(): 返回数据库中匹配查询(QuerySet)的对象数量。 first(): 返回第一条记录 last(): 返回最后一条记录 exists(): 如果QuerySet包含数据,就返回True,否则返回False
注意:一定区分object与querySet的区别 !!!
返回QuerySet对象的方法有
all() filter() exclude() order_by() reverse() distinct()
特殊的QuerySet
values() 返回一个可迭代的字典序列
values_list() 返回一个可迭代的元祖序列
双下划线的方法(判断)
models.Tb1.objects.filter(id__lt=10, id__gt=1) # 获取id大于1 且 小于10的值 models.Tb1.objects.filter(id__in=[11, 22, 33]) # 获取id等于11、22、33的数据 models.Tb1.objects.exclude(id__in=[11, 22, 33]) # not in models.Tb1.objects.filter(name__contains="ven") # 获取name字段包含"ven"的 models.Tb1.objects.filter(name__icontains="ven") # icontains大小写不敏感 models.Tb1.objects.filter(id__range=[1, 3]) # id范围是1到3的,等价于SQL的bettwen and 类似的还有:startswith,istartswith, endswith, iendswith date字段还可以: models.Class.objects.filter(first_day__year=2017)
重点在表查询
基于对象的跨表查询
正向查询(按字段:publish):
# 查询nid=1的书籍的出版社所在的城市
book_obj=Book.objects.get(nid=1)
print(book_obj.publish.city) # book_obj.publish 是nid=1的书籍对象关联的出版社对象
反向查询(按表名:book_set):
# 查询 人民出版社出版过的所有书籍 publish=Publish.objects.get(name="人民出版社") book_list=publish.book_set.all() # 与人民出版社关联的所有书籍对象集合 for book_obj in book_list: print(book_obj.title)
一对一查询(Author 与 AuthorDetail)
正向查询(按字段:authorDetail):
# 查询egon作者的手机号 author_egon=Author.objects.get(name="egon") print(author_egon.authorDetail.telephone)
反向查询(按表名:author):
# 查询所有住址在北京的作者的姓名 authorDetail_list=AuthorDetail.objects.filter(addr="beijing") for obj in authorDetail_list: print(obj.author.name)
多对多查询 (Author 与 Book)
正向查询(按字段:authors):
# 金瓶眉所有作者的名字以及手机号 book_obj=Book.objects.filter(title="金瓶眉").first() authors=book_obj.authors.all() for author_obj in authors: print(author_obj.name,author_obj.authorDetail.telephone)
反向查询(按表名:book_set):
# 查询egon出过的所有书籍的名字 author_obj=Author.objects.get(name="egon") book_list=author_obj.book_set.all() #与egon作者相关的所有书籍 for book_obj in book_list: print(book_obj.title)
注意:
你可以通过在 ForeignKey() 和ManyToManyField的定义中设置 related_name 的值来覆写 FOO_set 的名称。
例如,如果 Article model 中做一下更改: publish = ForeignKey(Blog, related_name='bookList'),那么接下来就会如我们看到这般:
# 查询 人民出版社出版过的所有书籍 publish=Publish.objects.get(name="人民出版社") book_list=publish.bookList.all() # 与人民出版社关联的所有书籍对象集合
聚合查询和分组查询
聚合
aggregate()是QuerySet 的一个终止子句,意思是说,它返回一个包含一些键值对的字典。
键的名称是聚合值的标识符,值是计算出来的聚合值。键的名称是按照字段和聚合函数的名称自动生成出来的。
用到的内置函数:
from django.db.models import Avg, Sum, Max, Min, Count
示例:
>>> from django.db.models import Avg, Sum, Max, Min, Count
>>> models.Book.objects.all().aggregate(Avg("price")) {'price__avg': 13.233333}
如果你想要为聚合值指定一个名称,可以向聚合子句提供它。
>>> models.Book.objects.aggregate(average_price=Avg('price'))
{'average_price': 13.233333}
如果你希望生成不止一个聚合,你可以向aggregate()子句中添加另一个参数。所以,如果你也想知道所有图书价格的最大值和最小值,可以这样查询:
>>> models.Book.objects.all().aggregate(Avg("price"), Max("price"), Min("price"))
{'price__avg': 13.233333, 'price__max': Decimal('19.90'), 'price__min': Decimal('9.90')}
分组
我们在这里先复习一下SQL语句的分组。
假设现在有一张公司职员表:
我们使用原生SQL语句,按照部分分组求平均工资:
select dept,AVG(salary) from employee group by dept;
ORM查询:
from django.db.models import Avg Employee.objects.values("dept").annotate(avg=Avg("salary").values(dept, "avg")
连表查询的分组:
SQL查询:
select dept.name,AVG(salary) from employee inner join dept on (employee.dept_id=dept.id) group by dept_id;
ORM查询:
from django.db.models import Avg models.Dept.objects.annotate(avg=Avg("employee__salary")).values("name", "avg")
更多示例:
示例1:统计每一本书的作者个数
>>> book_list = models.Book.objects.all().annotate(author_num=Count("author"))
>>> for obj in book_list:
... print(obj.author_num)
...
2
1
1
示例2:统计出每个出版社买的最便宜的书的价格
>>> publisher_list = models.Publisher.objects.annotate(min_price=Min("book__price"))
>>> for obj in publisher_list:
... print(obj.min_price)
...
9.90
19.90
方法二:
>>> models.Book.objects.values("publisher__name").annotate(min_price=Min("price"))
示例3:统计不止一个作者的图书
>>> models.Book.objects.annotate(author_num=Count("author")).filter(author_num__gt=1)
]>
示例4:根据一本图书作者数量的多少对查询集 QuerySet进行排序
>>> models.Book.objects.annotate(author_num=Count("author")).order_by("author_num")
, , ]>
示例5:查询各个作者出的书的总价格
>>> models.Author.objects.annotate(sum_price=Sum("book__price")).values("name", "sum_price")
F查询和Q查询
F查询
在上面所有的例子中,我们构造的过滤器都只是将字段值与某个常量做比较。如果我们要对两个字段的值做比较,那该怎么做呢?
Django 提供 F() 来做这样的比较。F() 的实例可以在查询中引用字段,来比较同一个 model 实例中两个不同字段的值。
示例1:
查询评论数大于收藏数的书籍
from django.db.models import F
models.Book.objects.filter(commnet_num__gt=F('keep_num'))
Django 支持 F() 对象之间以及 F() 对象和常数之间的加减乘除和取模的操作。
models.Book.objects.filter(commnet_num__lt=F('keep_num')*2)
修改操作也可以使用F函数,比如将每一本书的价格提高30元
models.Book.objects.all().update(price=F("price")+30)
引申:
如果要修改char字段咋办?
如:把所有书名后面加上(第一版)
>>> from django.db.models.functions import Concat
>>> from django.db.models import Value
>>> models.Book.objects.all().update(title=Concat(F("title"), Value("("), Value("第一版"), Value(")")))
Q查询
filter() 等方法中的关键字参数查询都是一起进行“AND” 的。 如果你需要执行更复杂的查询(例如OR语句),你可以使用Q对象。
示例1:
查询作者名是小仙女或小魔女的
models.Book.objects.filter(Q(authors__name="小仙女")|Q(authors__name="小魔女"))
你可以组合& 和| 操作符以及使用括号进行分组来编写任意复杂的Q 对象。同时,Q 对象可以使用~ 操作符取反,这允许组合正常的查询和取反(NOT) 查询。
示例:查询作者名字是小仙女并且不是2018年出版的书的书名。
>>> models.Book.objects.filter(Q(author__name="小仙女") & ~Q(publish_date__year=2018)).values_list("title")
查询函数可以混合使用Q 对象和关键字参数。所有提供给查询函数的参数(关键字参数或Q 对象)都将"AND”在一起。但是,如果出现Q 对象,它必须位于所有关键字参数的前面。
例如:查询出版年份是2017或2018,书名中带物语的所有书。
>>> models.Book.objects.filter(Q(publish_date__year=2018) | Q(publish_date__year=2017), title__icontains="物语")
, , ]>