uoj316【NOI2017】泳池
题目链接
\(S=k\)可以拆成\(S\le k\)减去\(S\le k-1\)。用\((i,j)\)表示第i行第j列。
设\(g(i,j)\)表示前i行前j列都安全其他未知满足条件的概率,\(h(i,j)\)表示前i行前j列是安全的但是\((i+1,j)\)是危险的,其他未知,满足条件的概率。当\(i*j>k\)时两个数组的值都是0。
\(g(i,j)\)的转移可以在\(i+1\)行枚举最右的危险格子来转移:\(g(i,j)=\sum_{k=0}^jh(i,k)*g(i+1,j-k)\)。\(h(i,j)\)同理枚举\(i+1\)行除了\((i+1,j)\)以外的最右的危险格子来转移:\(h(i,j)=\sum_{k=0}^{j-1}h(i,k)*g(i+1,j-k-1)*(1-q)*q^i\),这里dp的复杂度是\(\sum_{i}(\frac{k}{i})^2=O(k^2)\)的。
然后令\(f(i)\)表示前i列的最大矩形\(\le k\)的概率,转移时枚举第一行最长的连续安全区的长度(为\(j-1\)):\(f(i)=\sum_{j=1}^{k+1}f(i-j)*g(1,j-1)*(1-q)\),注意\(i\le k\)时还要从\(g(1,i)\)转移,因为可能它就是第一个连续的安全区。
这是常系数线性递推,k只有1000,可以在\(O(k^2logn)\)的时间内完成,考虑\(f_i=\sum_{j=1}^kf_{i-j}*a_j\)这样一个递推公式,有一个定理是说设这个矩阵的特征多项式为\(g(\lambda)\),(对于一般的矩阵\(g(\lambda)=|\lambda I-A|\),而这个矩阵\(g(\lambda)=\lambda^k-a_1\lambda^{k-1}-...-a_{k-1}\lambda-a_k\)),那么\(g(A)=0\)。因此\(A^k=a_1A^{k-1}+...+a_k\)也就是说\(A^k\)可以用\(A^{k-1}...A^0\)线性表示出来,然后假如我们可以用那k个矩阵线性表示出\(A^i\),那么\(A^i\)乘上\(A\)后再把多出来的\(A^k\)项用那个定理拆掉,所以对于任意的\(A^i\)都可以用\(A^{k-1}...A^0\)线性表示出来。
我们预处理\(A^k\)~\(A^{2k-2}\)的线性表示,两个矩阵相乘相当于两个k-1次多项式相乘,乘出来大于k-1次方的项就拆掉。
最后,设\(A^n=b_0A_0+b_1A_1+...+b_{k-1}A_{k-1}\),由于我们要求\(A^n*X\)的某一项的值,即\(b_0A_0X+b_1A_1X+...+b_{k-1}A_{k-1}X\)的那一项的值,\(k^2\)暴力算出\(A_0\)到\(A_{k-1}\)的值即可。
复杂度\(O(k^2logn)\),其实两部分都可以进一步优化。
#include
#include
#include
#include
#include
#include
#include
#define P puts("lala")
#define cp cerr<<"lala"<'9') {if(ch=='-')g=-1;ch=getchar();}
while(ch<='9'&&ch>='0') re=(re<<1)+(re<<3)+(ch^48),ch=getchar();
return re*g;
}
typedef long long ll;
typedef pair pii;
const int mod=998244353;
const int N=1050;
ll qpow(ll a,int n)
{
ll ans=1;
for(;n;n>>=1,a=a*a%mod) if(n&1) ans=ans*a%mod;
return ans;
}
int m[N<<1][N],C[N<<1];
void mul(int *a,int *b,int k)
{
for(int i=0;i<=(k-1<<1);++i) C[i]=0;
for(int i=0;i=1;--i)
{
for(int j=1;j*i<=K;++j)
{
for(int k=0;k>=1,mul(A,A,K)) if(n&1) mul(S,A,K);
int fn=0;
for(int i=0;i