redux深入理解之中间件(middleware)


本文代码请看本人github,https://github.com/Rynxiao/redux-middleware

关于redux运用,请看之前一篇文章http://blog.csdn.net/yuzhongzi81/article/details/51880577

理解reduce函数

reduce() 方法接收一个函数作为累加器(accumulator),数组中的每个值(从左到右)开始缩减,最终为一个值。

arr.reduce([callback, initialValue])

关于reduce的用法,这里不再做多述,可以去这里查看

看如下例子:

let arr = [1, 2, 3, 4, 5];

// 10代表初始值,p代表每一次的累加值,在第一次为10
// 如果不存在初始值,那么p第一次值为1
// 此时累加的结果为15
let sum = arr.reduce((p, c) => p + c, 10);	// 25

// 转成es5的写法即为:
var sum = arr.reduce(function(p, c) {
  	console.log(p);
  	return p + c;
}, 10);

下面我们再来看一个reduce的高级扩展。现在有这么一个数据结构,如下:

let school = {
	name: 'Hope middle school',
	created: '2001',
	classes: [
		{
			name: '三年二班',
			teachers: [
				{ name: '张二蛋', age: 26, sex: '男', actor: '班主任' },
				{ name: '王小妞', age: 23, sex: '女', actor: '英语老师' }
			]
		},
		{
			name: '明星班',
			teachers: [
				{ name: '欧阳娜娜', age: 29, sex: '女', actor: '班主任' },
				{ name: '李易峰', age: 28, sex: '男', actor: '体育老师' },
				{ name: '杨幂', age: 111, sex: '女', actor: '艺术老师' }
			]
		}
	]
};

比如我想取到这个学校的第一个班级的第一个老师的名字,可能你会这样写:

school.classes[0].teachers[0].name

这样不就行了么?so easy!是哦,这样写"毫无问题",这个毫无问题的前提是你已经知道了这个值确实存在,那么如果你不知道呢?或许你要这么写:

school.classes &&
school.classes[0] &&
school.classes[0].teachers &&
school.classes[0].teachers[0] &&
school.classes[0].teachers[0].name

我去,好大一坨,不过要在深层的对象中取值的场景在工作中真真实实存在呀?怎么办?逛知乎逛到一个大神的解决方案,如下:

const get = (p, o) => p.reduce((xs, x) => (xs && xs[x] ? xs[x] : null), o);

// call
get('classes', 0, 'teachers', 0, 'name', school);	// 张二蛋

是不是很简单,用reduce这个方法优雅地解决了这个问题。

理解redux的compose函数

讲了这么久的reduce,这不是讲redux么?这就尴尬了,下面我们就来看看为什么要讲这个reduce函数。去github上找到redux源码,会看到一个compose.js文件,带上注释共22行,其中就用到了reduce这个函数,那么这个函数是用来做啥的?可以看一看:

export default function compose(...funcs) {
    if (funcs.length === 0) {
      return arg => arg
    }

    if (funcs.length === 1) {
      return funcs[0]
    }

    return funcs.reduce((a, b) => (...args) => a(b(...args)))
}

初步看上去貌似就是函数的嵌套调用。我们去搜一下,看哪个地方会用到这个函数,在源码中找一下,发现在applyMiddleware.js中发现了这样的调用:

export default function applyMiddleware(...middlewares) {
    return (createStore) => (reducer, preloadedState, enhancer) => {
        const store = createStore(reducer, preloadedState, enhancer)
        let dispatch = store.dispatch
        let chain = []

        const middlewareAPI = {
          getState: store.getState,
          dispatch: (...args) => dispatch(...args)
        }
        chain = middlewares.map(middleware => middleware(middlewareAPI))
        dispatch = compose(...chain)(store.dispatch)

        return {
          ...store,
          dispatch
        }
    }
}

看到熟悉的东西了么?applyMiddleware哟,我们在写中间件必须要用的函数。我们来看一下一个简单的middleware是怎样写的?比如我要写一个loggerMiddleware,那么就像这样:

const logger = store => next => action => {
  	console.log('action', action);
  	let result = next(action);
  	console.log('logger after atate', store.getState());
  	return result;
}

当我们创建了一个store的时候,我们是这样调用的:

let middlewares = [loggerMiddleware, thunkMiddleware, ...others];
let store = applyMiddleware(middlewares)(createStore)(reducer, initialState);

那么传给compose的funcs实际上就是包含这样的函数的一个数组:

function(next) {
  	return function(action) {
      	return next(action);
  	}
}

当把这样的一个数组传给compose会发生什么样的化学反应呢?稍微看一下应该不难看出,最终会返回一个函数,这个函数是通过了层层middleware的加工,最终的形态仍如上面的这个样子。注意,此时的next(action)并未执行,当执行了

compose(...chain)(store.dispatch)

之后,返回的样子是这样的:

function(action) {
  	return next(action);
}

各位看官们,看出了一点点什么东西了么?好像createStore中的dispatch呀,没错,这其实也是一个dispatch,只是这个dispatch正一触即发,再等待一个机会。我们有这么一个数量加1的action,类似这样的:

export function addCount() {
    return {
        type : ADD_COUNT
    }
}

// 下面我们来触发一下
dispatch(addCount());

没错,此时的dispatch执行啦,最外层的dispatch执行了会发生什么样的反应呢?看下面:

return next(action);

// 这个next就是dispatch函数,只不过这个dispatch函数在每次执行的时候,会保留
// 上一个middleware传递的dispatch函数的引用,因此会一直的传递下去,
// 直到最终的store.dispatch执行

那么我们去createStore中去看看dispatch函数的定义:

function dispatch(action) {
      // ...

      try {
        	isDispatching = true
        	currentState = currentReducer(currentState, action)
      } finally {
        	isDispatching = false
      }

      // ...

      return action
  }

找到这一句

currentState = currentReducer(currentState, action);

当执行了这一步的时候,这一刻,原本传递过来的initialState值已经改变了,那么就会层层执行middleware之后的操作,还记得我们在middleware中这样写了么:

const logger = store => next => action => {
  	console.log('action', action);
  	let result = next(action);
  	console.log('logger after atate', store.getState());
  	return result;
}

这就是为什么我们会在next执行之后,会取到store中的state的原因。

异步的middlewares

异步的action写法上可能会和立即执行的action不一样,例如是这样的:

// 定义的非纯函数,提供异步请求支持
// 需要在sotre中使用thunkMiddleware
export function refresh() {
    return dispatch => {
        dispatch(refreshStart());
        return fetch(`src/mock/fetch-data-mock.json`)
            .then(response => response.json())
            .then(json => {
                setTimeout(() => {
                    dispatch(refreshSuccess(json && json.data.list));
                }, 3000);
            });
    }
}

为什么要使用thunkMiddleware呢,我们去找一找thunkMiddleware中到底写了什么?

function createThunkMiddleware(extraArgument) {
    return ({ dispatch, getState }) => next => action => {
        if (typeof action === 'function') {
          	return action(dispatch, getState, extraArgument);
        }

        return next(action);
    };
}

const thunk = createThunkMiddleware();
thunk.withExtraArgument = createThunkMiddleware;

export default thunk;

短短14行代码,看这一句:

if (typeof action === 'function') {
  	return action(dispatch, getState, extraArgument);
}

如果action的类型为function的话,那么就直接执行啦,实际上就是将一个异步的操作转化成了两个立即执行的action,只是需要在异步前和异步后分别发送状态。为什么要分解呢?如果不分解会是什么样的情况?还记得这一行代码吗?

currentReducer(currentState, action);

这里的reducer只接受纯函数,只接受纯函数,只接受纯函数,重要的事情说三遍。所以你传个非纯函数是个什么鬼?那不是直接走switchdefault了么?所以得到的state依旧是之前的state,没有任何改变。