求极限例题#1
\[求\lim_{x \to 0} \frac{tan2x}{x}
\]
分子分母均乘以2: $$ \lim_{x \to 0} \frac{2tan2x}{2x} $$
$\because tanx=\frac{sinx}{cosx} $
$\because x \to 0 ==2x\to 0, 且cosx(x\to 0)=1 $
\[\therefore \lim_{x \to 0} \frac{1}{cos2x} =1 \]\[\because \lim_{x \to 0} \frac{sinx}{x} =1 (第一个重要极限) \]\[\therefore \lim_{x \to 0} \frac{sin2x}{2x} =1 \]最终:$\quad 2\cdot 1\cdot 1=2 $
\[\lim_{x \to 0} \frac{tan2x}{x}=2 \]