Definitions in quantum computation and quantum information
mode: we can simply understand this as different eigenvectors in Dirac basis: \(|0\rangle\) is a mode, and \(|1\rangle\) is also a mode.
classical-quantum states[1]: \(\chi^{(A)}=\sum_{i} p_{i}|i\rangle\left\langle\left. i\right|^{A} \otimes \tau_{i}^{B}\right.\) where the states \(\left\{|i\rangle^{A}\right\}\) form an orthonormal basis for subsystem \(A\), and \(\left\{\tau_{i}^{B}\right\}\) denote a set of arbitrary states for subsystem \(B\), while \(\left\{p_{i}\right\}\) stands for a probability distribution.
Helstrom bound:The quantum multiparameter Cramér–Rao bound, also known as Helstrom bound[2].
Bloch representation for d-dimensional density matrix[2:1]: Bloch representation is another well-used tool in quantum information theory. For a \(d\)-dimensional density matrix, it can be expressed by
\[\rho=\frac{1}{d}\left(\mathbb{1}+\sqrt{\frac{d(d-1)}{2}} \vec{r} \cdot \vec{\kappa}\right), \]where \(\vec{r}=\left(r_{1}, r_{2} \ldots, r_{m}, \ldots\right)^{\mathrm{T}}\) is the Bloch vector \(\left(\left.\vec{r}\right|^{2} \leqslant 1\right)\) and \(\vec{\kappa}\) is a \(\left(d^{2}-1\right)\)-dimensional vector of \(\mathfrak{s u}(d)\) generator satisfying \(\operatorname{Tr}\left(\kappa_{i}\right)=0\).
D. Braun, G. Adesso, F. Benatti, R. Floreanini, U. Marzolino, M. W. Mitchell, and S. Pirandola, Quantum-Enhanced Measurements without Entanglement, Rev. Mod. Phys. 90, 035006 (2018). ??
J. Liu, H. Yuan, X.-M. Lu, and X. Wang, Quantum Fisher Information Matrix and Multiparameter Estimation, J. Phys. A: Math. Theor. 53, 023001 (2020). ?? ??