背包问题学习笔记 / Dynamic Programming(updating)
01背包问题
朴素版:(二维数组)
状态表示: dp[i][j]:从前i个物品中选择(每个物品只能选0或1个)且总体积不超过j的集合的最大价值,则dp[n][m]就是最终答案(n:物品数量,m:最大体积)
状态计算: dp[i][j] = max ( dp[i-1][j] , dp[i-1][j-vi]+wi ) // 由含i和不含i两个子集合计算而来(vi:物品体积,wi:物品价值)
核心代码:
int n, m; // n:物品数量, m:最大体积
int v[N], w[N], dp[N][M];
void keyCode()
{
for(int i = 1; i <= n; i++)
for(int j = 0; j <= m; j++)
{
dp[i][j] = dp[i-1][j];
if(v[i] >= j) dp[i][j] = max(dp[i][j], dp[i-1][j-v[i]] + w[i]);
}
}
空间优化版:(滚动数组,二维数组优化至一维)
状态表示:dp[j]:在外循环的第i层时,表示从前i个物品中选择(每个物品只能选0或1个)且总体积不超过j的集合的最大价值,n层循环后,dp[m]就是最终答案
状态计算:dp[j] = max ( dp[j] , dp[j-vi]+wi ) // 由含i和不含i两个子集合计算而来
核心代码:
int n, m; // n:物品数量, m:最大体积
int v[N], w[N], dp[N];
void keyCode()
{
for(int i = 1; i <= n; i++)
// 反向遍历, 否则dp[j-v[i]]可能为dp[i][j-v[i]](用更新后的值来更新导致出错)
for(int j = m; j >= v[i]; j--)
dp[j] = max(dp[j], dp[j-v[i]] + w[i]);
}
完全背包问题
朴素版:(二维数组)
状态表示:dp[i][j]:从前i种物品中选择(每种物品可以任选个数)且总体积不超过j的集合的最大价值,则dp[n][m]就是最终答案
状态计算:dp[i][j] = max ( dp[i-1][j] , dp[i][j-vi]+wi )
证明:dp[i][j] = max ( dp[i-1][j] , dp[i-1][j-vi]+wi , dp[i-1][j-2vi]+2wi , dp[i-1][j-3vi]+3wi , ...... )
dp[i][j-vi] = max ( dp[i-1][j-vi] , dp[i-1][j-2vi]+wi , dp[i-1][j-3vi]+2wi , ...... )
Thus,dp[i][j-vi]+wi = max ( dp[i-1][j-vi]+wi , dp[i-1][j-2vi]+2wi , dp[i-1][j-3vi]+3wi , ...... )
Thus,dp[i][j] = max ( dp[i-1][j] , dp[i][j-vi]+wi )
核心代码:
int n, m; // n:物品数量, m:最大体积
int v[N], w[N], dp[N][M];
void keyCode()
{
for(int i = 1; i <= n; i++)
for(int j = 0; j <= m; j++)
{
dp[i][j] = dp[i-1][j];
if(j >= v[i]) dp[i][j] = max(dp[i][j], dp[i][j-v[i]] + w[i]);
}
}
空间优化版:(滚动数组,二维数组优化至一维)
状态表示:dp[j]:在外循环的第i层时,表示从前i种物品中选择(每种物品可以任选个数)且总体积不超过j的集合的最大价值,n层循环后,dp[m]就是最终答案
状态计算:dp[j] = max ( dp[j] , dp[j-vi]+wi ) // 由含i和不含i两个子集合计算而来
核心代码:
int n, m; // n:物品数量, m:最大体积
int v[N], w[N], dp[N];
void keyCode()
{
for(int i = 1; i <= n; i++)
// 正向遍历, 使得dp[j-v[i]]为dp[i][j-v[i]]
for(int j = v[i]; j <= m; j++)
dp[j] = max(dp[j], dp[j-v[i]] + w[i]);
}
多重背包问题
朴素版:(二维数组+三重循环)
状态表示:dp[i][j]:从前i种物品中选择(每种物品最多选择si个)且总体积不超过j的集合的最大价值,则dp[n][m]就是最终答案
状态计算:dp[i][j] = max ( dp[i-1][j],dp[i-1][j-v]+w,dp[i-1][j-2v]+2w,...,dp[i-1][j-sv]+sw )
核心代码:
int n, m; // n:物品数量, m:最大体积
int v[N], w[N], s[S];
int dp[N][M];
void keyCode()
{
for(int i = 1; i <= n; i++)
for(int j = 0; j <= m; j++)
for(int k = 0; k <= s[i] && k * v[i] <= j; k++)
dp[i][j] = max(dp[i][j], dp[i-1][j-k*v[i]] + k*w[i]);
}
优化版:(一维数组+二重循环)
二进制优化:对于每种物品,将其按2的次幂大小拆分合并,如s[i]=12时,方案为:第1个物品合并,第2~3个物品合并,第4~7个物品合并,第8~12个物品合并(1,2,4,5)。这样,就将多重背包问题转化成01背包问题
状态表示:dp[j]:在外循环的第i层时,表示从前i个物品中选择(每个物品只能选0或1个)且总体积不超过j的集合的最大价值,n层循环后(n为问题转化后的新n),dp[m]就是最终答案
状态计算:dp[j] = max ( dp[j] , dp[j-vi]+wi )
核心代码:
int n, m;
int v[N], w[N], dp[M]; // N:maxn * logmaxs
void keyCode()
{
int cnt = 0;
for(int i = 1; i <= n; i++)
{
int a, b, s; // vi, wi, si
cin >> a >> b >> s;
int p = 1;
while(p <= s)
{
cnt ++;
v[cnt] = a * p, w[cnt] = b * p;
s -= p, p *= 2;
}
if(s > 0)
{
cnt ++;
v[cnt] = a * s, w[cnt] = b * s;
}
}
n = cnt; // n --> 问题转化后的新n
for(int i = 1; i <= n; i++)
for(int j = m; j >= v[i]; j--) // 反向遍历
dp[j] = max(dp[j], dp[j-v[i]] + w[i]);
}
分组背包问题
朴素版:(二维数组)
状态表示:dp[i][j]:从前i组物品中选择(每组物品中只能选择0或1个)且总体积不超过j的集合的最大价值,则dp[n][m]就是最终答案
状态计算:dp[i][j] = max ( dp[i-1][j],dp[i-1][j-vi,1]+wi,1,dp[i-1][j-vi,2]+wi,2,dp[i-1][j-vi,3]+wi,3,... )
核心代码:
int n, m; // n:物品数量, m:最大体积
int s[N], v[N][S], w[N][S];
int dp[N][M];
void keyCode()
{
for(int i = 1; i <= n; i++)
{
for(int j = 0; j <= m; j++)
{
dp[i][j] = dp[i-1][j];
for(int k = 1; k <= s[i]; k++)
if(v[i][k] <= j)
dp[i][j] = max(dp[i][j], dp[i-1][j-v[i][k]] + w[i][k]);
}
}
}
空间优化版:(滚动数组,二维数组优化至一维)
int n, m; // n:物品数量, m:最大体积
int s[N], v[N][S], w[N][S];
int dp[M];
void keyCode()
{
for(int i = 1; i <= n; i++)
{
for(int j = m; j >= 0; j--) // 反向遍历
{
for(int k = 1; k <= s[i]; k++)
if(v[i][k] <= j)
dp[j] = max(dp[j], dp[j-v[i][k]] + w[i][k]);
}
}
}