数据分析
数据分析
注意点:
1.整理数据时会有一些空缺的数据需要将其进行排除:
pos_not_nan = pos.isna() print(pos_not_nan)
结果:
0 False
1 False
2 False
3 False
4 False
...
453 False
454 False
455 False
456 False
457 True
True 为空
方法:
dics = {'PG':0,'SF':0,'PF':0,'SG':0,'C':0}
for i in range(len(pos)):
if pos_not_nan[i]==False:
dics[pos[i]] += 1
print(dics)
2.画图时有一些不会可以查找网站:
例如:https://gallery.pyecharts.org
在网站中找到一些合适的图将其代码复制一下
再将里面的一些参数进行调整成自己用的参数
画饼图、柱状图:
1、划分出5个收入等级
2、绘制出饼图
柱状图:
from pyecharts import options as opts
from pyecharts.charts import Bar
a = ["0-2000000","2000001-4000000","4000001-6000000","6000001-8000000","8000001-10000000"]
b = [0,0,0,0,0]
sal = data['Salary']
sal_na = sal.isna()
for i in range(len(sal_na)):
if sal_na[i] == False:
if sal[i] > 0 and sal[i] < 2000000:
b[0] += 1
elif sal[i] > 2000001 and sal[i] < 4000000:
b[1] += 1
elif sal[i] > 4000001 and sal[i] < 6000000:
b[2] += 1
elif sal[i] > 6000001 and sal[i] < 8000000:
b[3] += 1
elif sal[i] > 8000001 and sal[i] < 10000000:
b[4] += 1
c = (
Bar()
.add_xaxis(a)
.add_yaxis("分段",b)
.set_global_opts(
xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-15)),
title_opts=opts.TitleOpts(title="Bar-旋转X轴标签", subtitle="解决标签名字过长的问题"),
)
.render("bar_rotate_xaxis_label.html")
)
饼图:
from pyecharts import options as opts
from pyecharts.charts import Pie
from pyecharts.faker import Faker
d = 0
f = 0
e = []
for i in range(len(b)):
d += b[i]
for j in range(len(b)):
f = round(b[j]/d*100,2)
e.append(f)
c = (
Pie()
.add(
"",
[list(z) for z in zip(a, e)],
center=["35%", "50%"],
)
.set_global_opts(
title_opts=opts.TitleOpts(title="Pie-调整位置"),
legend_opts=opts.LegendOpts(pos_left="15%"),
)
.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:({d}%)"))
.render("pie_position.html")
)