题目传送门:https://codeforces.com/problemset/problem/2/B
题目大意: 给定 \(n\times n\) 的数表,求一条从左上角到右下角的路径,使得路径上各数相乘所得的后置零尽可能少,输出操作序列(DR)
由于后置零仅可能由\(2\times 5\)得到,故我们将所有数中的2,5质因子个数求出来,然后找到一条2的个数或5的个数最少的路径即可。
/*program from Wolfycz*/ #include #include #include #include #include #include #include #define Fi first #define Se second #define ll_inf 1e18 #define MK make_pair #define sqr(x) ((x)*(x)) #define pii pair #define int_inf 0x7f7f7f7f using namespace std; typedef long long ll; typedef unsigned int ui; typedef unsigned long long ull; inline char gc(){ static char buf[1000000],*p1=buf,*p2=buf; return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++; } templateinline T frd(T x){ int f=1; char ch=gc(); for (;ch<'0'||ch>'9';ch=gc()) if (ch=='-') f=-1; for (;ch>='0'&&ch<='9';ch=gc()) x=(x<<1)+(x<<3)+ch-'0'; return x*f; } templateinline T read(T x){ int f=1; char ch=getchar(); for (;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') f=-1; for (;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+ch-'0'; return x*f; } inline void print(int x){ if (x<0) putchar('-'),x=-x; if (x>9) print(x/10); putchar(x%10+'0'); } const int N=1e3; int F[2][N+10][N+10],opt; pii Frm[2][N+10][N+10]; char Ans[N+10]; char Direction(int sx,int sy,int ex,int ey){ if (sx+1==ex) return 'D'; if (sy+1==ey) return 'R'; return 0; } void solve(int x,int y){ int len=0; while (x>1||y>1){ pii temp=Frm[opt][x][y]; Ans[len++]=Direction(temp.Fi,temp.Se,x,y); x=temp.Fi,y=temp.Se; } reverse(Ans,Ans+len); printf("%s\n",Ans); } int main(){ // freopen(".in","r",stdin); // freopen(".out","w",stdout); int n=read(0),Flag=0,Zx,Zy; for (int i=1;i<=n;i++){ for (int j=1;j<=n;j++){ int x=read(0); if (!x){ Zx=i,Zy=j; Flag|=1; continue; } while (x%2==0) F[0][i][j]++,x/=2; while (x%5==0) F[1][i][j]++,x/=5; } } for (int K=0;K<2;K++){ for (int i=1;i<=n;i++){ for (int j=1;j<=n;j++){ if (i==1&&j==1) continue; if (i==1){ F[K][i][j]+=F[K][i][j-1]; Frm[K][i][j]=MK(i,j-1); continue; } if (j==1){ F[K][i][j]+=F[K][i-1][j]; Frm[K][i][j]=MK(i-1,j); continue; } F[K][i][j]+=min(F[K][i-1][j],F[K][i][j-1]); Frm[K][i][j]=F[K][i-1][j]1&&Flag){ printf("1\n"); for (int i=1;i