解析WeNet云端推理部署代码


摘要:WeNet是一款开源端到端ASR工具包,它与ESPnet等开源语音项目相比,最大的优势在于提供了从训练到部署的一整套工具链,使ASR服务的工业落地更加简单。

本文分享自华为云社区《WeNet云端推理部署代码解析》,作者:xiaoye0829 。

WeNet是一款开源端到端ASR工具包,它与ESPnet等开源语音项目相比,最大的优势在于提供了从训练到部署的一整套工具链,使ASR服务的工业落地更加简单。如图1所示,WeNet工具包完全依赖于PyTorch生态:使用TorchScript进行模型开发,使用Torchaudio进行动态特征提取,使用DistributedDataParallel进行分布式训练,使用torch JIT(Just In Time)进行模型导出,使用LibTorch作为生产环境运行时。本系列将对WeNet云端推理部署代码进行解析。

图1:WeNet系统设计[1]

1. 代码结构

WeNet云端推理和部署代码位于wenet/runtime/server/x86路径下,编程语言为C++,其结构如下所示:

其中:

  • 语音文件读入与特征提取相关代码位于frontend文件夹下;
  • 端到端模型导入、端点检测与语音解码识别相关代码位于decoder文件夹下,WeNet支持CTC prefix beam search和融合了WFST的CTC beam search这两种解码算法,后者的实现大量借鉴了Kaldi,相关代码放在kaldi文件夹下;
  • 在服务化方面,WeNet分别实现了基于WebSocket和基于gRPC的两套服务端与客户端,基于WebSocket的实现位于websocket文件夹下,基于gRPC的实现位于grpc文件夹下,两种实现的入口main函数代码都位于bin文件夹下。
  • 日志、计时、字符串处理等辅助代码位于utils文件夹下。

WeNet提供了CMakeLists.txt和Dockerfile,使得用户能方便地进行项目编译和镜像构建。

2. 前端:frontend文件夹

1)语音文件读入

WeNet只支持44字节header的wav格式音频数据,wav header定义在WavHeader结构体中,包括音频格式、声道数、采样率等音频元信息。WavReader类用于语音文件读入,调用fopen打开语音文件后,WavReader先读入WavHeader大小的数据(也就是44字节),再根据WavHeader中的元信息确定待读入音频数据的大小,最后调用fread把音频数据读入buffer,并通过static_cast把数据转化为float类型。

struct WavHeader {
  char riff[4];  // "riff"
  unsigned int size;
  char wav[4];  // "WAVE"
  char fmt[4];  // "fmt "
  unsigned int fmt_size;
  uint16_t format;
  uint16_t channels;
  unsigned int sample_rate;
  unsigned int bytes_per_second;
  uint16_t block_size;
  uint16_t bit;
  char data[4];  // "data"
  unsigned int data_size;
};

这里存在的一个风险是,如果WavHeader中存放的元信息有误,则会影响到语音数据的正确读入。

2)特征提取

WeNet使用的特征是fbank,通过FeaturePipelineConfig结构体进行特征设置。默认帧长为25ms,帧移为10ms,采样率和fbank维数则由用户输入。

用于特征提取的类是FeaturePipeline。为了同时支持流式与非流式语音识别,FeaturePipeline类中设置了input_finished_属性来标志输入是否结束,并通过set_input_finished()成员函数来对input_finished_属性进行操作。

提取出来的fbank特征放在feature_queue_中,feature_queue_的类型是BlockingQueue>。BlockingQueue类是WeNet实现的一个阻塞队列,初始化的时候需要提供队列的容量(capacity),通过Push()函数向队列中增加特征,通过Pop()函数从队列中读取特征:

  • 当feature_queue_中的feature数量超过capacity,则Push线程被挂起,等待feature_queue_.Pop()释放出空间。
  • 当feature_queue_为空,则Pop线程被挂起,等待feature_queue_.Push()。
    线程的挂起和恢复是通过C++标准库中的线程同步原语std::mutex、std::condition_variable等实现。
    线程同步还用在AcceptWaveform和ReadOne两个成员函数中,AcceptWaveform把语音数据提取得到的fbank特征放到feature_queue_中,ReadOne成员函数则把特征从feature_queue_中读出,是经典的生产者消费者模式。

3. 解码器:decoder文件夹

1)TorchAsrModel

通过torch::jit::load对存在磁盘上的模型进行反序列化,得到一个ScriptModule对象。

torch::jit::script::Module model = torch::jit::load(model_path);

2)SearchInterface

WeNet推理支持的解码方式都继承自基类SearchInterface,如果要新增解码算法,则需继承SearchInterface类,并提供该类中所有纯虚函数的实现,包括:

// 解码算法的具体实现
virtual void Search(const torch::Tensor& logp) = 0;
// 重置解码过程
virtual void Reset() = 0;
// 结束解码过程
virtual void FinalizeSearch() = 0;
// 解码算法类型,返回一个枚举常量SearchType
virtual SearchType Type() const = 0;
// 返回解码输入
virtual const std::vectorint>>& Inputs() const = 0;
// 返回解码输出
virtual const std::vectorint>>& Outputs() const = 0;
// 返回解码输出对应的似然值
virtual const std::vector<float>& Likelihood() const = 0;
// 返回解码输出对应的次数
virtual const std::vectorint>>& Times() const = 0;

目前WeNet只提供了SearchInterface的两种子类实现,也即两种解码算法,分别定义在CtcPrefixBeamSearch和CtcWfstBeamSearch两个类中。

3)CtcEndpoint

WeNet支持语音端点检测,提供了一种基于规则的实现方式,用户可以通过CtcEndpointConfig结构体和CtcEndpointRule结构体进行规则配置。WeNet默认的规则有三条:

  • 检测到了5s的静音,则认为检测到端点;
  • 解码出了任意时长的语音后,检测到了1s的静音,则认为检测到端点;
  • 解码出了20s的语音,则认为检测到端点。
    一旦检测到端点,则结束解码。另外,WeNet把解码得到的空白符(blank)视作静音。

4)TorchAsrDecoder

WeNet提供的解码器定义在TorchAsrDecoder类中。如图3所示,WeNet支持双向解码,即叠加从左往右解码和从右往左解码的结果。在CTC beam search之后,用户还可以选择进行attention重打分。

图2:WeNet解码计算流程[2]

可以通过DecodeOptions结构体进行解码参数配置,包括如下参数:

struct DecodeOptions {
  int chunk_size = 16;
  int num_left_chunks = -1;
  float ctc_weight = 0.0;
  float rescoring_weight = 1.0;
  float reverse_weight = 0.0;
  CtcEndpointConfig ctc_endpoint_config;
  CtcPrefixBeamSearchOptions ctc_prefix_search_opts;
  CtcWfstBeamSearchOptions ctc_wfst_search_opts;
};

其中,ctc_weight表示CTC解码权重,rescoring_weight表示重打分权重,reverse_weight表示从右往左解码权重。最终解码打分的计算方式为:

final_score = rescoring_weight * rescoring_score + ctc_weight * ctc_score;
rescoring_score = left_to_right_score * (1 - reverse_weight) +
right_to_left_score * reverse_weight

TorchAsrDecoder对外提供的解码接口是Decode(),重打分接口是Rescoring()。Decode()返回的是枚举类型DecodeState,包括三个枚举常量:kEndBatch,kEndpoint和kEndFeats,分别表示当前批数据解码结束、检测到端点、所有特征解码结束。

为了支持长语音识别,WeNet还提供了连续解码接口ResetContinuousDecoding(),它与解码器重置接口Reset()的区别在于:连续解码接口会记录全局已经解码的语音帧数,并保留当前feature_pipeline_的状态。

由于流式ASR服务需要在客户端和服务端之间进行双向的流式数据传输,WeNet实现了两种支持双向流式通信的服务化接口,分别基于WebSocket和gRPC。

4. 基于WebSocket

1)WebSocket简介

WebSocket是基于TCP的一种新的网络协议,与HTTP协议不同,WebSocket允许服务器主动发送信息给客户端。 在连接建立后,客户端和服务端可以连续互相发送数据,而无需在每次发送数据时重新发起连接请求。因此大大减小了网络带宽的资源消耗 ,在性能上更有优势。

WebSocket支持文本和二进制两种格式的数据传输 。

2)WeNet的WebSocket接口

WeNet使用了boost库的WebSocket实现,定义了WebSocketClient(客户端)和WebSocketServer(服务端)两个类。

在流式ASR过程中,WebSocketClient给WebSocketServer发送数据可以分为三个步骤:1)发送开始信号与解码配置;2)发送二进制语音数据:pcm字节流;3)发送停止信号。从WebSocketClient::SendStartSignal()和WebSocketClient::SendEndSignal()可以看到,开始信号、解码配置和停止信号都是包装在json字符串中,通过WebSocket文本格式传输。pcm字节流则通过WebSocket二进制格式进行传输。

void WebSocketClient::SendStartSignal() {
  // TODO(Binbin Zhang): Add sample rate and other setting surpport
  json::value start_tag = {{"signal", "start"},
                           {"nbest", nbest_},
                           {"continuous_decoding", continuous_decoding_}};
  std::string start_message = json::serialize(start_tag);
  this->SendTextData(start_message);
}

void WebSocketClient::SendEndSignal() {
  json::value end_tag = {{"signal", "end"}};
  std::string end_message = json::serialize(end_tag);
  this->SendTextData(end_message);
}

WebSocketServer在收到数据后,需要先判断收到的数据是文本还是二进制格式:如果是文本数据,则进行json解析,并根据解析结果进行解码配置、启动或停止,处理逻辑定义在ConnectionHandler::OnText()函数中。如果是二进制数据,则进行语音识别,处理逻辑定义在ConnectionHandler::OnSpeechData()中。

3)缺点

WebSocket需要开发者在WebSocketClient和WebSocketServer写好对应的消息构造和解析代码,容易出错。另外,从以上代码来看,服务需要借助json格式来序列化和反序列化数据,效率没有protobuf格式高。

对于这些缺点,gRPC框架提供了更好的解决方法。

5. 基于gRPC

1)gRPC简介

gRPC是谷歌推出的开源RPC框架,使用HTTP2作为网络传输协议,并使用protobuf作为数据交换格式,有更高的数据传输效率。在gRPC框架下,开发者只需通过一个.proto文件定义好RPC服务(service)与消息(message),便可通过gRPC提供的代码生成工具(protoc compiler)自动生成消息构造和解析代码,使开发者能更好地聚焦于接口设计本身。

进行RPC调用时,gRPC Stub(客户端)向gRPC Server(服务端)发送.proto文件中定义的Request消息,gRPC Server在处理完请求之后,通过.proto文件中定义的Response消息将结果返回给gRPC Stub。

gRPC具有跨语言特性,支持不同语言写的微服务进行互动,比如说服务端用C++实现,客户端用Ruby实现。protoc compiler支持12种语言的代码生成。

图1:gRPC Server和gRPC Stub交互[1]

2)WeNet的proto文件

WeNet定义的服务为ASR,包含一个Recognize方法,该方法的输入(Request)、输出(Response)都是流式数据(stream)。在使用protoc compiler编译proto文件后,会得到4个文件:wenet.grpc.pb.h,,wenet.pb.h,。其中,wenet.pb.h/cc中存储了protobuf数据格式的定义,wenet.grpc.pb.h中存储了gRPC服务端/客户端的定义。通过在代码中包括wenet.pb.h和wenet.grpc.pb.h两个头文件,开发者可以直接使用Request消息和Response消息类,访问其字段。

service ASR {
  rpc Recognize (stream Request) returns (stream Response) {}
}

message Request {

  message DecodeConfig {
    int32 nbest_config = 1;
    bool continuous_decoding_config = 2;
  }

  oneof RequestPayload {
    DecodeConfig decode_config = 1;
    bytes audio_data = 2;
  }
}

message Response {

  message OneBest {
    string sentence = 1;
    repeated OnePiece wordpieces = 2;
  }

  message OnePiece {
    string word = 1;
    int32 start = 2;
    int32 end = 3;
  }

  enum Status {
    ok = 0;
    failed = 1;
  }

  enum Type {
    server_ready = 0;
    partial_result = 1;
    final_result = 2;
    speech_end = 3;
  }

  Status status = 1;
  Type type = 2;
  repeated OneBest nbest = 3;
}

3)WeNet的gRPC实现

WeNet gRPC服务端定义了GrpcServer类,该类继承自wenet.grpc.pb.h中的纯虚基类ASR::Service。

语音识别的入口函数是GrpcServer::Recognize,该函数初始化一个GRPCConnectionHandler实例来进行语音识别,并通过ServerReaderWriter类的stream对象来传递输入输出。

Status GrpcServer::Recognize(ServerContext* context,
                             ServerReaderWriter* stream) {
  LOG(INFO) << "Get Recognize request" << std::endl;
  auto request = std::make_shared();
  auto response = std::make_shared();
  GrpcConnectionHandler handler(stream, request, response, feature_config_,
                                decode_config_, symbol_table_, model_, fst_);
  std::thread t(std::move(handler));
  t.join();
  return Status::OK;
}

WeNet gRPC客户端定义了GrpcClient类。客户端在建立与服务端的连接时需实例化ASR::Stub,并通过ClientReaderWriter类的stream对象,实现双向流式通信。

void GrpcClient::Connect() {
  channel_ = grpc::CreateChannel(host_ + ":" + std::to_string(port_),
                                 grpc::InsecureChannelCredentials());
  stub_ = ASR::NewStub(channel_);
  context_ = std::make_shared();
  stream_ = stub_->Recognize(context_.get());
  request_ = std::make_shared();
  response_ = std::make_shared();
  request_->mutable_decode_config()->set_nbest_config(nbest_);
  request_->mutable_decode_config()->set_continuous_decoding_config(
      continuous_decoding_);
  stream_->Write(*request_);
}

中,客户端分段传输语音数据,每0.5s进行一次传输,即对于一个采样率为8k的语音文件来说,每次传4000帧数据。为了减小传输数据的大小,提升数据传输速度,先在客户端将float类型转为int16_t,服务端在接受到数据后,再将int16_t转为float。c++中float为32位。

int main(int argc, char *argv[]) {
  ...
  // Send data every 0.5 second
  const float interval = 0.5;
  const int sample_interval = interval * sample_rate;
  for (int start = 0; start < num_sample; start += sample_interval) {
    if (client.done()) {
      break;
    }
    int end = std::min(start + sample_interval, num_sample);
    // Convert to short
    std::vector data;
    data.reserve(end - start);
    for (int j = start; j < end; j++) {
      data.push_back(static_cast(pcm_data[j]));
    }
    // Send PCM data
    client.SendBinaryData(data.data(), data.size() * sizeof(int16_t));
    ...
}

总结

本文主要对WeNet云端部署代码进行解析,介绍了WeNet基于WebSocket和基于gRPC的两种服务化接口。

WeNet代码结构清晰,简洁易用,为语音识别提供了从训练到部署的一套端到端解决方案,大大促进了工业落地效率,是非常值得借鉴学习的语音开源项目。

参考

[1] https://grpc.io/docs/what-is-grpc/introduction/

[2]WeNet: Production First and Production Ready End-to-End Speech Recognition Toolkit

[3]WeNet源码

[4]WeNet: Production First and Production Ready End-to-End Speech Recognition Toolkit

[5] U2++: Unified Two-pass Bidirectional End-to-end Model for Speech Recognition

 

点击关注,第一时间了解华为云新鲜技术~