JUC 线程池的使用与源码解析


线程池创建与使用

线程池的创建

Executors 框架提供了各种类型的线程池,主要有以下工厂方法∶

  • public static ExecutorService newFixedThreadPool(int nThreads)
  • public static ExecutorService newCachedThreadPool()
  • public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize)
  • public static ExecutorService newSingleThreadExecutor()
  • public static ScheduledExecutorService newSingleThreadScheduledExecutor()

corePoolSize > 1 的方法名称以 Pool 结尾,等于 1 的以 Executor 结尾。

Executors 的真正实现类主要包括两个 ThreadPoolExecutor 和 ScheduledThreadPoolExecutor。

newFixedThreadPool

线程数达到核心线程数之后不会再新建线程(一方面是队列是无边界的,另一方面是 corePoolSize = maximumPoolSize)。

public static ExecutorService newFixedThreadPool(int nThreads) {
    return new ThreadPoolExecutor(nThreads, nThreads, // corePoolSize = maximumPoolSize
                                  0L, TimeUnit.MILLISECONDS,
                                  // 无界队列,所以即使设置了最大线程数,线程池中的线程数量也不会达到最大线程数
                                  new LinkedBlockingQueue());
}
newSingleThreadExecutor

类似于 newFixedThreadPool,只是将 corePoolSize 和 maximumPoolSize 都设置为 1。

public static ExecutorService newSingleThreadExecutor() {
    return new FinalizableDelegatedExecutorService
        (new ThreadPoolExecutor(1, 1, // corePoolSize = maximumPoolSize = 1
                                0L, TimeUnit.MILLISECONDS,
                                // 无界队列
                                new LinkedBlockingQueue()));
}
newCachedThreadPool
public static ExecutorService newCachedThreadPool() {
    return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                  60L, TimeUnit.SECONDS,
                                  new SynchronousQueue());
}
newScheduledThreadPool

可以指定核心线程数,用于创建一个用于执行周期性或者定时任务的线程池。

public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {
    return new ScheduledThreadPoolExecutor(corePoolSize);
}

public ScheduledThreadPoolExecutor(int corePoolSize) {
    super(corePoolSize, Integer.MAX_VALUE, 0, NANOSECONDS,
          // 延迟队列
          new DelayedWorkQueue());
}

ScheduledExecutorService 的核心方法如下:

// 延迟 delay 时间后,执行 Runnable 任务
public ScheduledFuture<?> schedule(Runnable command, long delay, TimeUnit unit);

// 延迟 delay 时间后,执行 Callable 任务
public  ScheduledFuture schedule(Callable callable, long delay, TimeUnit unit);

// 定时任务
// 以上一个任务开始时间开始计时,period 时间后,如果上一个任务已完成,则立即执行,否则等待上一个任务完成后再执行
public ScheduledFuture<?> scheduleAtFixedRate(Runnable command, long initialDelay, long period, TimeUnit unit);

// 延迟任务
// 以上一个任务的结束时间开始计时,delay 时间后,立即执行
public ScheduledFuture<?> scheduleWithFixedDelay(Runnable command, long initialDelay, long delay, TimeUnit unit);

delay 或者 period 时间后,表示任务可以立即执行,但是也要先获取到线程才会立马执行,否则会先阻塞等待获取线程,和一般的线程池逻辑类似。

线程池的使用

等待所有任务线程执行完成

引用:

ExecutorService等待线程完成后优雅结束

How to wait for all threads to finish, using ExecutorService?

方法一:shutdown() / shutdownNow() + awaitTermination()
ExecutorService taskExecutor = Executors.newFixedThreadPool(4);

while(...) {
    taskExecutor.execute(new MyTask());
}

// 线程池暂停接收新的任务
taskExecutor.shutdown();

try {
    // 等待所有任务完成
    taskExecutor.awaitTermination(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
} catch (InterruptedException e) {
    // ...
}
方法二:invokeAll + shutdown() / shutdownNow() + awaitTermination()

我们可以用来运行线程的第一种方法是 invokeAll() 方法,在所有任务完成或超时到期后,该方法返回 Future 对象列表。

此外,我们必须注意返回的 Future 对象的顺序与提供的 Callable 对象的列表相同:

ExecutorService taskExecutor = Executors.newFixedThreadPool(10);

// your tasks
List> callables = Arrays.asList(new DelayedCallable("fast thread", 100), new DelayedCallable("slow thread", 3000));

// invokeAll() returns when all tasks are complete
List> futures = taskExecutor.invokeAll(callables);

taskExecutor.shutdown();

try {
    // 等待所有任务完成
    taskExecutor.awaitTermination(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
} catch (InterruptedException e) {
    // ...
}
方法三:使用 CountDownLatch
ExecutorService taskExecutor = Executors.newFixedThreadPool(10);
CountDownLatch latch = new CountDownLatch(2);

for(int i = 0; i < 2; i++){
    taskExecutor.submit(() -> {
        try {
            // 业务逻辑...
            latch.countDown();
        } catch (InterruptedException e) {
            Thread.currentThread().interrupt();
        }
    });
}

// wait for the latch to be decremented by the two remaining threads
latch.await();
方法四:使用 ExecutorCompletionService

运行多个线程的另一种方法是使用 ExecutorCompletionService,它使用提供的 ExecutorService 来执行任务。

与 invokeAll 的一个区别是返回表示执行任务的 Futures 的顺序。ExecutorCompletionService 使用队列按结束顺序存储结果,而 invokeAll 返回一个列表,该列表具有与给定任务列表的迭代器生成的顺序相同的顺序:

CompletionService service = new ExecutorCompletionService<>(WORKER_THREAD_POOL);

List> callables = Arrays.asList(new DelayedCallable("fast thread", 100), new DelayedCallable("slow thread", 3000));

for (Callable callable : callables) {
      service.submit(callable);
}
方法五:使用 Java8 的 CompletableFuture
ExecutorService taskExecutor = Executors.newFixedThreadPool(4);
List tasks = getTasks();
CompletableFuture<?>[] futures = tasks.stream()
                               .map(task -> CompletableFuture.runAsync(task, taskExecutor))
                               .toArray(CompletableFuture[]::new);
// 等待所有任务执行完成
CompletableFuture.allOf(futures).join();    
taskExecutor.shutdown();

线程池的配置及优化

配置主要是 ThreadPoolExecutor 构造方法的参数配置。

coreThreadPoolSize

每个线程都需要一定的栈内存空间。在最近的64位JVM中, 默认的栈大小 是1024KB。如果服务器收到大量请求,或者handleRequest方法执行很慢,服务器可能因为创建了大量线程而崩溃。例如有1000个并行的请求,创建出来的1000个线程需要使用1GB的JVM内存作为线程栈空间。另外,每个线程代码执行过程中创建的对象,还可能会在堆上创建对象。这样的情况恶化下去,将会超出JVM堆内存,并产生大量的垃圾回收操作,最终引发 内存溢出(OutOfMemoryErrors) 。

这些线程不仅仅会消耗内存,它们还会使用其他有限的资源,例如文件句柄、数据库连接等。不可控的创建线程,还可能引发其他类型的错误和崩溃。因此,避免资源耗尽的一个重要方式,就是避免不可控的数据结构。

顺便说下,由于线程栈大小引发的内存问题,可以通过-Xss开关来调整栈大小。缩小线程栈大小之后,可以减少每个线程的开销,但是可能会引发 栈溢出(StackOverflowErrors) 。对于一般应用程序而言,默认的1024KB过于富裕,调小为256KB或者512KB可能更为合适。Java允许的最小值是160KB。

CPU密集型任务应配置尽可能小的线程,如配置 cpu 核数 + 1 个线程的线程池,减少线程的切换。

IO密集型任务线程并不是一直在执行任务,则应配置尽可能多的线程,如 cpu 核数 * 2

对于 IO 型的任务的最佳线程数,有个公式可以计算

$$Nthreads = NCPU * UCPU * (1 + W/C)$$

其中:

? * NCPU 是处理器的核的数目

? * UCPU 是期望的 CPU 利用率(该值应该介于 0 和 1 之间)

? * W / C 是等待时间与计算时间的比率

由于线程数的选定依赖于应用程序的类型,可能需要经过大量性能测试之后,才能得出最优的结果。

通过线程池提供的参数进行监控。线程池里有一些属性在监控线程池的时候可以使用:

  • getTaskCount:线程池已经执行的和未执行的任务总数(所有线程的 completedTaskCount 数量加上阻塞队列中的元素个数);
  • getCompletedTaskCount:线程池已完成的任务数量(所有线程的 completedTaskCount 数量),该值小于等于 taskCount;
  • getLargestPoolSize:线程池曾经创建过的最大线程数量。通过这个数据可以知道线程池是否满过,也就是达到了 maximumPoolSize;
  • getPoolSize:线程池当前的线程数量(workers 里元素的个数);
  • getActiveCount:当前线程池中正在执行任务(独占锁被占用)的线程数量。

通过这些方法,可以对线程池进行监控,在 ThreadPoolExecutor 类中提供了几个空方法,如 beforeExecute 方法,afterExecute 方法和 terminated 方法,可以扩展这些方法在执行前或执行后增加一些新的操作,例如统计线程池的执行任务的时间等,可以继承自 ThreadPoolExecutor 来进行扩展。

workQueue
maximumPoolSize
threadFactory

默认使用 DefaultThreadFactory,可以自定义。

RejectedExecutionHandler

除了默认的 4 种拒绝策略外,还可以自定义拒绝策略。

AbstractExecutorService 源码

AbstractExecutorService 抽象类实现类 ExecutorService 接口。

FutureTask 源码参考:

public interface Executor {

    /**
     * Executes the given command at some time in the future.  The command
     * may execute in a new thread, in a pooled thread, or in the calling
     * thread, at the discretion of the {@code Executor} implementation.
     *
     * @param command the runnable task
     * @throws RejectedExecutionException if this task cannot be
     * accepted for execution
     * @throws NullPointerException if command is null
     */
    void execute(Runnable command);
}


public abstract class AbstractExecutorService implements ExecutorService {

    // 使用线程对象 runnable 和 保存 runnable 执行结果的变量 value 来构造一个 FutureTask 对象
    // newTaskFor 方法使用了适配器模式,可以将 Runnable + value 或者 callable 对象构造成一个 FutureTask 对象
    protected  RunnableFuture newTaskFor(Runnable runnable, T value) {
        return new FutureTask(runnable, value);
    }

    // 使用 callable 对象构造一个 FutureTask 对象
    protected  RunnableFuture newTaskFor(Callable callable) {
        return new FutureTask(callable);
    }

    // 提交任务到线程池,返回一个 FutureTask 对象
    public Future<?> submit(Runnable task) {
        if (task == null) throw new NullPointerException();
        RunnableFuture ftask = newTaskFor(task, null);
        // 将任务添加到线程池中执行
        execute(ftask);
        return ftask;
    }

    // 同上
    public  Future submit(Runnable task, T result) {
        if (task == null) throw new NullPointerException();
        RunnableFuture ftask = newTaskFor(task, result);
        execute(ftask);
        return ftask;
    }

    // 同上
    public  Future submit(Callable task) {
        if (task == null) throw new NullPointerException();
        RunnableFuture ftask = newTaskFor(task);
        execute(ftask);
        return ftask;
    }

    // 批量执行多个任务,但是只要一个任务完成就返回,同时中断其它任务
    private  T doInvokeAny(Collection<? extends Callable> tasks,
                              boolean timed, long nanos)
        throws InterruptedException, ExecutionException, TimeoutException {
        if (tasks == null)
            throw new NullPointerException();
        // 当前待执行的任务数量
        int ntasks = tasks.size();
        if (ntasks == 0)
            throw new IllegalArgumentException();
        ArrayList> futures = new ArrayList>(ntasks);
        // 创建一个 ExecutorCompletionService 对象,当前线程池对象作为 ExecutorCompletionService 的 executor
        // ExecutorCompletionService 可以维护一批 Future 任务,然后按照任务完成的先后顺序,添加到一个先进先出阻塞队列中
        // 然后通过 take 或者 poll 方法获取到的一个已经执行完成的 Future 任务,可以直接调用 future 任务的 get 方法获取执行结果
        ExecutorCompletionService ecs =
            new ExecutorCompletionService(this);

        // For efficiency, especially in executors with limited
        // parallelism, check to see if previously submitted tasks are
        // done before submitting more of them. This interleaving
        // plus the exception mechanics account for messiness of main
        // loop.

        try {
            // Record exceptions so that if we fail to obtain any
            // result, we can throw the last exception we got.
            ExecutionException ee = null;
            final long deadline = timed ? System.nanoTime() + nanos : 0L;
            Iterator<? extends Callable> it = tasks.iterator();

            // Start one task for sure; the rest incrementally
            futures.add(ecs.submit(it.next()));
            --ntasks;
            // 当前正在执行的任务数量
            int active = 1;

            for (;;) {
                Future f = ecs.poll();
                // 从 ecs 的队列里没有获取到任务
                if (f == null) {
                    // 未执行的任务数量大于 0
                    if (ntasks > 0) {
                        --ntasks;
                        // 继续获取下一个未执行的任务,将其添加到线程池中去执行
                        futures.add(ecs.submit(it.next()));
                        ++active;
                    }
                    else if (active == 0)
                        // 任务都已经执行完成了
                        break;
                    else if (timed) {
                        // 从 ecs 的阻塞队列中获取一个已完成的 Future 对象,可超时
                        f = ecs.poll(nanos, TimeUnit.NANOSECONDS);
                        if (f == null)
                            throw new TimeoutException();
                        nanos = deadline - System.nanoTime();
                    }
                    else
                        // 阻塞低从 ecs 的阻塞队列中获取一个已完成的 Future 对象
                        f = ecs.take();
                }
                
                // 从阻塞队列中获取到了一个完成的 Future 任务(直接返回执行结果,并退出方法)
                if (f != null) {
                    --active;
                    try {
                        // 返回获取到的一个任务的执行结果
                        return f.get();
                    } catch (ExecutionException eex) {
                        ee = eex;
                    } catch (RuntimeException rex) {
                        ee = new ExecutionException(rex);
                    }
                }
            }

            if (ee == null)
                ee = new ExecutionException();
            throw ee;

        } finally {
            // 从阻塞队列中获取到了一个完成的 Future 任务并返回任务的执行结果,然后将所有的任务都中断掉
            for (int i = 0, size = futures.size(); i < size; i++)
                futures.get(i).cancel(true);
        }
    }

    public  T invokeAny(Collection<? extends Callable> tasks)
        throws InterruptedException, ExecutionException {
        try {
            return doInvokeAny(tasks, false, 0);
        } catch (TimeoutException cannotHappen) {
            assert false;
            return null;
        }
    }

    public  T invokeAny(Collection<? extends Callable> tasks,
                           long timeout, TimeUnit unit)
        throws InterruptedException, ExecutionException, TimeoutException {
        return doInvokeAny(tasks, true, unit.toNanos(timeout));
    }

    // 批量执行多个任务
    public  List> invokeAll(Collection<? extends Callable> tasks)
        throws InterruptedException {
        if (tasks == null)
            throw new NullPointerException();
        ArrayList> futures = new ArrayList>(tasks.size());
        boolean done = false;
        try {
            // 将多个任务依次添加到线程池中去执行
            for (Callable t : tasks) {
                RunnableFuture f = newTaskFor(t);
                // 将任务结果添加到 futures 中
                futures.add(f);
                execute(f);
            }
            // 遍历 futures 集合
            for (int i = 0, size = futures.size(); i < size; i++) {
                Future f = futures.get(i);
                // 如果任务未完成
                if (!f.isDone()) {
                    try {
                        // 阻塞获取执行结果
                        f.get();
                    } catch (CancellationException ignore) {
                    } catch (ExecutionException ignore) {
                    }
                }
            }
            // 执行到这里,说明所有任务都已完成了
            done = true;
            // 返回执行
            return futures;
        } finally {
            if (!done)
                for (int i = 0, size = futures.size(); i < size; i++)
                    futures.get(i).cancel(true);
        }
    }

    public  List> invokeAll(Collection<? extends Callable> tasks,
                                         long timeout, TimeUnit unit)
        throws InterruptedException {
        if (tasks == null)
            throw new NullPointerException();
        long nanos = unit.toNanos(timeout);
        ArrayList> futures = new ArrayList>(tasks.size());
        boolean done = false;
        try {
            for (Callable t : tasks)
                futures.add(newTaskFor(t));

            final long deadline = System.nanoTime() + nanos;
            final int size = futures.size();

            // Interleave time checks and calls to execute in case
            // executor doesn't have any/much parallelism.
            for (int i = 0; i < size; i++) {
                execute((Runnable)futures.get(i));
                nanos = deadline - System.nanoTime();
                if (nanos <= 0L)
                    return futures;
            }

            for (int i = 0; i < size; i++) {
                Future f = futures.get(i);
                if (!f.isDone()) {
                    if (nanos <= 0L)
                        return futures;
                    try {
                        f.get(nanos, TimeUnit.NANOSECONDS);
                    } catch (CancellationException ignore) {
                    } catch (ExecutionException ignore) {
                    } catch (TimeoutException toe) {
                        return futures;
                    }
                    nanos = deadline - System.nanoTime();
                }
            }
            done = true;
            return futures;
        } finally {
            if (!done)
                for (int i = 0, size = futures.size(); i < size; i++)
                    futures.get(i).cancel(true);
        }
    }

}

ThreadPoolExecutor 源码

对于核心的几个线程池,无论是 newFixedThreadPool() 方法、newCachedThreadPol()、还是 newSingleThreadExecutor() 方法,虽然看起来创建的线程有着完全不同的功能特点,但其内部实现均使用了 ThreadPoolExecutor 实现。

ThreadPoolExecutor 属性
public class ThreadPoolExecutor extends AbstractExecutorService {

    // ctl 字段存储线程池的当前状态和线程数
    // 高 3 位存放线程池的运行状态 (runState) 
    // 低 29 位存放线程池内有效线程(活跃)的数量 (workerCount)
    private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));

    // 在 Java 中,一个 int 占据 32 位,所以 COUNT_BITS 的结果是 32 - 3 = 29
    private static final int COUNT_BITS = Integer.SIZE - 3;

    // CAPACITY 就代表了 workerCount 的上限,它是 ThreadPoolExecutor 中理论上的最大活跃线程数
    // 运算过程为 1 左移 29 位,也就是 00000000 00000000 00000000 00000001 --> 001 0000 00000000 00000000 00000000,再减去1的话,就是 000 11111 11111111 11111111 11111111,前三位代表线程池运行状态 runState,所以这里 workerCount 的理论最大值就应该是 29 个 1,即 536870911
    private static final int CAPACITY   = (1 << COUNT_BITS) - 1;

    // runState is stored in the high-order bits

    // RUNNING:接受新任务,并处理队列任务
    // -1 在 Java 底层是由 32 个 1 表示的,左移 29 位的话,即 111 00000 00000000 00000000 00000000,也就是低 29 位全部为 0,高 3 位全部为 1 的话,表示 RUNNING 状态,即 -536870912
    private static final int RUNNING    = -1 << COUNT_BITS;

    // SHUTDOWN:不接受新任务,但会处理队列任务
    // 在线程池处于 RUNNING 状态时,调用 shutdown() 方法会使线程池进入到该状态(finalize() 方法在执行过程中也会调用 shutdown() 方法进入该状态)
    // 0 在 Java 底层是由 32 个 0 表示的,无论左移多少位,还是 32 个 0,即 000 00000 00000000 00000000 00000000,也就是低 29 位全部为 0,高 3 位全部为 0 的话,表示 SHUTDOWN 状态,即 0;
    private static final int SHUTDOWN   =  0 << COUNT_BITS;

    // STOP:不接受新任务,不会处理队列任务,而且会中断正在处理过程中的任务
    // 在线程池处于 RUNNING 或 SHUTDOWN 状态时,调用 shutdownNow() 方法会使线程池进入到该状态
    // 1 在 Java 底层是由前面的 31 个 0 和 1 个 1 组成的,左移 29 位的话,即 001 00000 00000000 00000000 00000000,也就是低 29 位全部为 0,高 3 位为 001 的话,表示 STOP 状态,即 536870912;
    private static final int STOP       =  1 << COUNT_BITS;

    // TIDYING:所有的任务已结束,workerCount 为 0,线程池进入该状态后会调用 terminated() 方法进入TERMINATED 状态
    // 在 Java 底层是由前面的 30 个 0 和 1 个 11 组成的,左移 29 位的话,即 011 00000 00000000 00000000 00000000,也就是低 29 位全部为 0,高 3 位为 011 的话,表示 TERMINATED 状态,即 1610612736;
    private static final int TIDYING    =  2 << COUNT_BITS;

    // TERMINATED:在 terminated() 方法执行完后进入该状态,默认 terminated() 方法中什么也没有做
    private static final int TERMINATED =  3 << COUNT_BITS;

    // Packing and unpacking ctl

    // 传入的 c 代表的是 ctl 的值,即高 3 位为线程池运行状态 runState,低 29 位为线程池中当前活动的线程数量 workerCount

    // runState:线程池运行状态,占据 ctl 的高 3 位,有 RUNNING、SHUTDOWN、STOP、TIDYING、TERMINATED 五种状态
    // ~ 是按位取反的意思,CAPACITY 表示的是高位的 3 个 0,和低位的 29 个 1,而 ~CAPACITY 则表示高位的 3 个 1,低位的 29 个 0,然后再与入参 c 执行按位与操作,即高 3 位保持原样,低 29 位全部设置为 0,也就获取了线程池的运行状态 runState。
    private static int runStateOf(int c)     { return c & ~CAPACITY; }

    // 取得当前线程池内有效线程的数量
    // workerCount:线程池中当前活动的线程数量,占据 ctl 的低 29 位
    // 将 c 与 CAPACITY 进行与操作 &,也就是与 000 11111 11111111 11111111 11111111 进行与操作,c 的前三位通过与 000 进行与操作,无论 c 前三位为何值,最终都会变成 000,也就是舍弃前三位的值,而 c 的低 29 位与 29 个 1 进行与操作,c 的低 29 位还是会保持原值,这样就从 AtomicInteger ctl 中解析出了 workerCount 的值
    private static int workerCountOf(int c)  { return c & CAPACITY; }

    // 原子变量 ctl 的初始化方法
    // 传入的 rs 表示线程池运行状态 runState,其是高 3 位有值,低 29 位全部为 0 的 int,而 wc 则代表线程池中有效线程的数量 workerCount,其为高 3 位全部为 0,而低 29 位有值得 int,将 runState 和 workerCount 做或操作 | 处理,即用 runState 的高 3 位,workerCount 的低 29 位填充的数字,而默认传入的 runState、workerCount 分别为 RUNNING 和 0。
    private static int ctlOf(int rs, int wc) { return rs | wc; }

    /*
     * Bit field accessors that don't require unpacking ctl.
     * These depend on the bit layout and on workerCount being never negative.
     */

    private static boolean runStateLessThan(int c, int s) {
        return c < s;
    }

    private static boolean runStateAtLeast(int c, int s) {
        return c >= s;
    }

    private static boolean isRunning(int c) {
        return c < SHUTDOWN;
    }

    /**
     * Attempts to CAS-increment the workerCount field of ctl.
     */
    private boolean compareAndIncrementWorkerCount(int expect) {
        return ctl.compareAndSet(expect, expect + 1);
    }

    /**
     * Attempts to CAS-decrement the workerCount field of ctl.
     */
    private boolean compareAndDecrementWorkerCount(int expect) {
        return ctl.compareAndSet(expect, expect - 1);
    }

    /**
     * Decrements the workerCount field of ctl. This is called only on
     * abrupt termination of a thread (see processWorkerExit). Other
     * decrements are performed within getTask.
     */
    private void decrementWorkerCount() {
        do {} while (! compareAndDecrementWorkerCount(ctl.get()));
    }

    /**
     * workQueue 是用于持有任务并将其转换成工作线程 worker 的队列
     */
    private final BlockingQueue workQueue;

    private final ReentrantLock mainLock = new ReentrantLock();

    /**
     * workers 是包含线程池中所有工作线程 worker 的集合
     * 仅仅当获得 mainLock 锁时才能访问它
     */
    private final HashSet workers = new HashSet();

    /**
     * Wait condition to support awaitTermination
     */
    private final Condition termination = mainLock.newCondition();

    // 记录 workers 集合最大的元素个数
    private int largestPoolSize;

    /**
     * 线程池已完成的任务的数量
     */
    private long completedTaskCount;

    /**
     * 创建新线程的工厂类
     */
    private volatile ThreadFactory threadFactory;

    /**
     * 执行拒绝策略的处理器
     */
    private volatile RejectedExecutionHandler handler;

    /**
     * 空闲线程等待工作的超时时间(纳秒),即空闲线程存活时间 
     */
    private volatile long keepAliveTime;

    /**
     * 是否允许核心线程超时
     * 默认值为 false,如果为 false,core 线程在空闲时依然存活;如果为 true,则 core 线程等待工作,直到时间超时至 keepAliveTime
     */
    private volatile boolean allowCoreThreadTimeOut;

    /**
     * 核心线程池大小,保持存活的工作线程的最小数目,当小于 corePoolSize 时,会直接启动新的一个线程来处理任务,而不管线程池中是否有空闲线程
     */
    private volatile int corePoolSize;

    /**
     * 线程池中线程的最大数量
     */
    private volatile int maximumPoolSize;

    /**
     * The default rejected execution handler
     */
    private static final RejectedExecutionHandler defaultHandler =
        new AbortPolicy();

    private static final RuntimePermission shutdownPerm =
        new RuntimePermission("modifyThread");

    /* The context to be used when executing the finalizer, or null. */
    private final AccessControlContext acc;

    // Public constructors and methods
    // 以下是构造方法

    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue workQueue) {
        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
             Executors.defaultThreadFactory(), defaultHandler);
    }

    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue workQueue,
                              ThreadFactory threadFactory) {
        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
             threadFactory, defaultHandler);
    }

    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue workQueue,
                              RejectedExecutionHandler handler) {
        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
             Executors.defaultThreadFactory(), handler);
    }

    /**
     * Creates a new {@code ThreadPoolExecutor} with the given initial
     * parameters.
     *
     * @param corePoolSize the number of threads to keep in the pool, even
     *        if they are idle, unless {@code allowCoreThreadTimeOut} is set
     * @param maximumPoolSize the maximum number of threads to allow in the
     *        pool
     * @param keepAliveTime when the number of threads is greater than
     *        the core, this is the maximum time that excess idle threads
     *        will wait for new tasks before terminating.
     * @param unit the time unit for the {@code keepAliveTime} argument
     * @param workQueue the queue to use for holding tasks before they are
     *        executed.  This queue will hold only the {@code Runnable}
     *        tasks submitted by the {@code execute} method.
     * @param threadFactory the factory to use when the executor
     *        creates a new thread
     * @param handler the handler to use when execution is blocked
     *        because the thread bounds and queue capacities are reached
     * @throws IllegalArgumentException if one of the following holds:
* {@code corePoolSize < 0}
* {@code keepAliveTime < 0}
* {@code maximumPoolSize <= 0}
* {@code maximumPoolSize < corePoolSize} * @throws NullPointerException if {@code workQueue} * or {@code threadFactory} or {@code handler} is null */ public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler) { if (corePoolSize < 0 || maximumPoolSize <= 0 || maximumPoolSize < corePoolSize || keepAliveTime < 0) throw new IllegalArgumentException(); if (workQueue == null || threadFactory == null || handler == null) throw new NullPointerException(); this.acc = System.getSecurityManager() == null ? null : AccessController.getContext(); this.corePoolSize = corePoolSize; this.maximumPoolSize = maximumPoolSize; this.workQueue = workQueue; this.keepAliveTime = unit.toNanos(keepAliveTime); this.threadFactory = threadFactory; this.handler = handler; } private void advanceRunState(int targetState) { for (;;) { int c = ctl.get(); if (runStateAtLeast(c, targetState) || ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c)))) break; } } /** * Invokes {@code shutdown} when this executor is no longer * referenced and it has no threads. */ protected void finalize() { SecurityManager sm = System.getSecurityManager(); if (sm == null || acc == null) { shutdown(); } else { PrivilegedAction pa = () -> { shutdown(); return null; }; AccessController.doPrivileged(pa, acc); } } /** * Sets the thread factory used to create new threads. * * @param threadFactory the new thread factory * @throws NullPointerException if threadFactory is null * @see #getThreadFactory */ public void setThreadFactory(ThreadFactory threadFactory) { if (threadFactory == null) throw new NullPointerException(); this.threadFactory = threadFactory; } /** * Returns the thread factory used to create new threads. * * @return the current thread factory * @see #setThreadFactory(ThreadFactory) */ public ThreadFactory getThreadFactory() { return threadFactory; } /** * Sets a new handler for unexecutable tasks. * * @param handler the new handler * @throws NullPointerException if handler is null * @see #getRejectedExecutionHandler */ public void setRejectedExecutionHandler(RejectedExecutionHandler handler) { if (handler == null) throw new NullPointerException(); this.handler = handler; } /** * Returns the current handler for unexecutable tasks. * * @return the current handler * @see #setRejectedExecutionHandler(RejectedExecutionHandler) */ public RejectedExecutionHandler getRejectedExecutionHandler() { return handler; } /** * Sets the core number of threads. This overrides any value set * in the constructor. If the new value is smaller than the * current value, excess existing threads will be terminated when * they next become idle. If larger, new threads will, if needed, * be started to execute any queued tasks. * * @param corePoolSize the new core size * @throws IllegalArgumentException if {@code corePoolSize < 0} * @see #getCorePoolSize */ public void setCorePoolSize(int corePoolSize) { if (corePoolSize < 0) throw new IllegalArgumentException(); int delta = corePoolSize - this.corePoolSize; this.corePoolSize = corePoolSize; if (workerCountOf(ctl.get()) > corePoolSize) interruptIdleWorkers(); else if (delta > 0) { // We don't really know how many new threads are "needed". // As a heuristic, prestart enough new workers (up to new // core size) to handle the current number of tasks in // queue, but stop if queue becomes empty while doing so. int k = Math.min(delta, workQueue.size()); while (k-- > 0 && addWorker(null, true)) { if (workQueue.isEmpty()) break; } } } /** * Returns the core number of threads. * * @return the core number of threads * @see #setCorePoolSize */ public int getCorePoolSize() { return corePoolSize; } /** * Starts a core thread, causing it to idly wait for work. This * overrides the default policy of starting core threads only when * new tasks are executed. This method will return {@code false} * if all core threads have already been started. * * @return {@code true} if a thread was started */ public boolean prestartCoreThread() { return workerCountOf(ctl.get()) < corePoolSize && addWorker(null, true); } /** * Same as prestartCoreThread except arranges that at least one * thread is started even if corePoolSize is 0. */ void ensurePrestart() { int wc = workerCountOf(ctl.get()); if (wc < corePoolSize) addWorker(null, true); else if (wc == 0) addWorker(null, false); } /** * Starts all core threads, causing them to idly wait for work. This * overrides the default policy of starting core threads only when * new tasks are executed. * * @return the number of threads started */ public int prestartAllCoreThreads() { int n = 0; while (addWorker(null, true)) ++n; return n; } /** * Returns true if this pool allows core threads to time out and * terminate if no tasks arrive within the keepAlive time, being * replaced if needed when new tasks arrive. When true, the same * keep-alive policy applying to non-core threads applies also to * core threads. When false (the default), core threads are never * terminated due to lack of incoming tasks. * * @return {@code true} if core threads are allowed to time out, * else {@code false} * * @since 1.6 */ public boolean allowsCoreThreadTimeOut() { return allowCoreThreadTimeOut; } /** * Sets the policy governing whether core threads may time out and * terminate if no tasks arrive within the keep-alive time, being * replaced if needed when new tasks arrive. When false, core * threads are never terminated due to lack of incoming * tasks. When true, the same keep-alive policy applying to * non-core threads applies also to core threads. To avoid * continual thread replacement, the keep-alive time must be * greater than zero when setting {@code true}. This method * should in general be called before the pool is actively used. * * @param value {@code true} if should time out, else {@code false} * @throws IllegalArgumentException if value is {@code true} * and the current keep-alive time is not greater than zero * * @since 1.6 */ public void allowCoreThreadTimeOut(boolean value) { if (value && keepAliveTime <= 0) throw new IllegalArgumentException("Core threads must have nonzero keep alive times"); if (value != allowCoreThreadTimeOut) { allowCoreThreadTimeOut = value; if (value) interruptIdleWorkers(); } } /** * Sets the maximum allowed number of threads. This overrides any * value set in the constructor. If the new value is smaller than * the current value, excess existing threads will be * terminated when they next become idle. * * @param maximumPoolSize the new maximum * @throws IllegalArgumentException if the new maximum is * less than or equal to zero, or * less than the {@linkplain #getCorePoolSize core pool size} * @see #getMaximumPoolSize */ public void setMaximumPoolSize(int maximumPoolSize) { if (maximumPoolSize <= 0 || maximumPoolSize < corePoolSize) throw new IllegalArgumentException(); this.maximumPoolSize = maximumPoolSize; if (workerCountOf(ctl.get()) > maximumPoolSize) interruptIdleWorkers(); } /** * Returns the maximum allowed number of threads. * * @return the maximum allowed number of threads * @see #setMaximumPoolSize */ public int getMaximumPoolSize() { return maximumPoolSize; } /** * Sets the time limit for which threads may remain idle before * being terminated. If there are more than the core number of * threads currently in the pool, after waiting this amount of * time without processing a task, excess threads will be * terminated. This overrides any value set in the constructor. * * @param time the time to wait. A time value of zero will cause * excess threads to terminate immediately after executing tasks. * @param unit the time unit of the {@code time} argument * @throws IllegalArgumentException if {@code time} less than zero or * if {@code time} is zero and {@code allowsCoreThreadTimeOut} * @see #getKeepAliveTime(TimeUnit) */ public void setKeepAliveTime(long time, TimeUnit unit) { if (time < 0) throw new IllegalArgumentException(); if (time == 0 && allowsCoreThreadTimeOut()) throw new IllegalArgumentException("Core threads must have nonzero keep alive times"); long keepAliveTime = unit.toNanos(time); long delta = keepAliveTime - this.keepAliveTime; this.keepAliveTime = keepAliveTime; if (delta < 0) interruptIdleWorkers(); } /** * Returns the thread keep-alive time, which is the amount of time * that threads in excess of the core pool size may remain * idle before being terminated. * * @param unit the desired time unit of the result * @return the time limit * @see #setKeepAliveTime(long, TimeUnit) */ public long getKeepAliveTime(TimeUnit unit) { return unit.convert(keepAliveTime, TimeUnit.NANOSECONDS); } /* User-level queue utilities */ /** * Returns the task queue used by this executor. Access to the * task queue is intended primarily for debugging and monitoring. * This queue may be in active use. Retrieving the task queue * does not prevent queued tasks from executing. * * @return the task queue */ public BlockingQueue getQueue() { return workQueue; } /** * Removes this task from the executor's internal queue if it is * present, thus causing it not to be run if it has not already * started. * *

This method may be useful as one part of a cancellation * scheme. It may fail to remove tasks that have been converted * into other forms before being placed on the internal queue. For * example, a task entered using {@code submit} might be * converted into a form that maintains {@code Future} status. * However, in such cases, method {@link #purge} may be used to * remove those Futures that have been cancelled. * * @param task the task to remove * @return {@code true} if the task was removed */ public boolean remove(Runnable task) { boolean removed = workQueue.remove(task); tryTerminate(); // In case SHUTDOWN and now empty return removed; } /** * Tries to remove from the work queue all {@link Future} * tasks that have been cancelled. This method can be useful as a * storage reclamation operation, that has no other impact on * functionality. Cancelled tasks are never executed, but may * accumulate in work queues until worker threads can actively * remove them. Invoking this method instead tries to remove them now. * However, this method may fail to remove tasks in * the presence of interference by other threads. */ public void purge() { final BlockingQueue q = workQueue; try { Iterator it = q.iterator(); while (it.hasNext()) { Runnable r = it.next(); if (r instanceof Future<?> && ((Future<?>)r).isCancelled()) it.remove(); } } catch (ConcurrentModificationException fallThrough) { // Take slow path if we encounter interference during traversal. // Make copy for traversal and call remove for cancelled entries. // The slow path is more likely to be O(N*N). for (Object r : q.toArray()) if (r instanceof Future<?> && ((Future<?>)r).isCancelled()) q.remove(r); } tryTerminate(); // In case SHUTDOWN and now empty } /* Statistics */ /** * Returns the current number of threads in the pool. * * @return the number of threads */ public int getPoolSize() { final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { // Remove rare and surprising possibility of // isTerminated() && getPoolSize() > 0 return runStateAtLeast(ctl.get(), TIDYING) ? 0 : workers.size(); } finally { mainLock.unlock(); } } /** * Returns the approximate number of threads that are actively * executing tasks. * * @return the number of threads */ public int getActiveCount() { final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { int n = 0; for (Worker w : workers) if (w.isLocked()) ++n; return n; } finally { mainLock.unlock(); } } /** * Returns the largest number of threads that have ever * simultaneously been in the pool. * * @return the number of threads */ public int getLargestPoolSize() { final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { return largestPoolSize; } finally { mainLock.unlock(); } } /** * Returns the approximate total number of tasks that have ever been * scheduled for execution. Because the states of tasks and * threads may change dynamically during computation, the returned * value is only an approximation. * * @return the number of tasks */ public long getTaskCount() { final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { long n = completedTaskCount; for (Worker w : workers) { n += w.completedTasks; if (w.isLocked()) ++n; } return n + workQueue.size(); } finally { mainLock.unlock(); } } /** * Returns the approximate total number of tasks that have * completed execution. Because the states of tasks and threads * may change dynamically during computation, the returned value * is only an approximation, but one that does not ever decrease * across successive calls. * * @return the number of tasks */ public long getCompletedTaskCount() { final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { long n = completedTaskCount; for (Worker w : workers) n += w.completedTasks; return n; } finally { mainLock.unlock(); } } /** * Returns a string identifying this pool, as well as its state, * including indications of run state and estimated worker and * task counts. * * @return a string identifying this pool, as well as its state */ public String toString() { long ncompleted; int nworkers, nactive; final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { ncompleted = completedTaskCount; nactive = 0; nworkers = workers.size(); for (Worker w : workers) { ncompleted += w.completedTasks; if (w.isLocked()) ++nactive; } } finally { mainLock.unlock(); } int c = ctl.get(); String rs = (runStateLessThan(c, SHUTDOWN) ? "Running" : (runStateAtLeast(c, TERMINATED) ? "Terminated" : "Shutting down")); return super.toString() + "[" + rs + ", pool size = " + nworkers + ", active threads = " + nactive + ", queued tasks = " + workQueue.size() + ", completed tasks = " + ncompleted + "]"; } }

ThreadFactory
public interface ThreadFactory {

    /**
     * Constructs a new {@code Thread}.  Implementations may also initialize
     * priority, name, daemon status, {@code ThreadGroup}, etc.
     *
     * @param r a runnable to be executed by new thread instance
     * @return constructed thread, or {@code null} if the request to
     *         create a thread is rejected
     */
    Thread newThread(Runnable r);
}
public class Executors {

    public static ThreadFactory defaultThreadFactory() {
        return new DefaultThreadFactory();
    }

    /**
     * 默认的线程工厂
     */
    static class DefaultThreadFactory implements ThreadFactory {
        static final AtomicInteger poolNumber = new AtomicInteger(1);//池数量
        final ThreadGroup group;//线程组
        final AtomicInteger threadNumber = new AtomicInteger(1);//线程数量
        final String namePrefix;

        /*
         * 创建默认的线程工厂
         */
        DefaultThreadFactory() {
            SecurityManager s = System.getSecurityManager();
            group = (s != null)? s.getThreadGroup() :
            Thread.currentThread().getThreadGroup();
            namePrefix = "pool-" +
                poolNumber.getAndIncrement() +
                "-thread-";
        }

        /*
         * 创建一个新的线程
         */
        public Thread newThread(Runnable r) {
            Thread t = new Thread(group, r,
                                  // 新线程的名字
                                  namePrefix + threadNumber.getAndIncrement(),
                                  0);
            // 将后台守护线程设置为应用线程
            if (t.isDaemon())
                t.setDaemon(false);

            // 将线程的优先级全部设置为 NORM_PRIORITY
            if (t.getPriority() != Thread.NORM_PRIORITY)
                t.setPriority(Thread.NORM_PRIORITY);

            return t;
        }
    }

}
Worker
// 通过继承 AQS 来实现独占锁这个功能
private final class Worker
    extends AbstractQueuedSynchronizer
    implements Runnable
{
    /**
         * This class will never be serialized, but we provide a
         * serialVersionUID to suppress a javac warning.
         */
    private static final long serialVersionUID = 6138294804551838833L;

    /** Thread this worker is running in.  Null if factory fails. */
    // 执行任务的线程
    final Thread thread;

    /** Initial task to run.  Possibly null. */
    // 要执行的任务
    Runnable firstTask;

    /** Per-thread task counter */
    // thread 线程已完成的任务数量
    volatile long completedTasks;

    /**
         * Creates with given first task and thread from ThreadFactory.
         * @param firstTask the first task (null if none)
         */
    Worker(Runnable firstTask) {
        // 设置 AQS 是 state 为 -1,主要目的是为了在 runWoker 之前不让中断。
        setState(-1); // inhibit interrupts until runWorker
        this.firstTask = firstTask;
        // this 表示 new 的 Worker 对象,Worker 实现了 Runnable 接口
        // 所以这里是用 Worker 对象来创建一个 thread 对象
        // Worker 中的 thread 的 start 方法会执行 Worker 的 run 方法
        // Worker 的 run 方法会调用线程池的 runWorker(this) 方法
        // runWorker(this) 则是调用 worker 的 firstTask 的 run 方法
        // 好处是可以重复利用 Worker 中的 thread ——> 处理阻塞队列中的任务
        this.thread = getThreadFactory().newThread(this);
    }

    /** Delegates main run loop to outer runWorker  */
    public void run() {
        runWorker(this);
    }

    // Lock methods
    //
    // The value 0 represents the unlocked state.
    // The value 1 represents the locked state.

    protected boolean isHeldExclusively() {
        return getState() != 0;
    }

    // 尝试独占锁
    protected boolean tryAcquire(int unused) {
        if (compareAndSetState(0, 1)) {
            setExclusiveOwnerThread(Thread.currentThread());
            return true;
        }
        return false;
    }

    // 释放独占锁
    protected boolean tryRelease(int unused) {
        setExclusiveOwnerThread(null);
        setState(0);
        return true;
    }

    public void lock()        { acquire(1); }
    public boolean tryLock()  { return tryAcquire(1); }
    public void unlock()      { release(1); }
    public boolean isLocked() { return isHeldExclusively(); }

    // 中断已启动线程
    void interruptIfStarted() {
        Thread t;
        // getState() >= 0 说明该线程已启动
        // 线程 t 不能为 null
        // 并且 t 没有被中断过(中断过就不需要再次中断了)
        if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
            try {
                // 中断该线程
                t.interrupt();
            } catch (SecurityException ignore) {
            }
        }
    }
}
execute
public void execute(Runnable command) {
    if (command == null)
        throw new NullPointerException();

    // 获取线程池状态
    int c = ctl.get();
    // 1. 当前线程池工作线程数小于核心线程池数
    if (workerCountOf(c) < corePoolSize) {
        // 使用核心线程池中的线程处理任务,成功则返回
        if (addWorker(command, true))
            return;
        // 如果调用核心线程池的线程处理任务失败,则重新获取线程池状态
        c = ctl.get();
    }
    // 2. 如果线程池当前状态仍然处于运行中,则将任务添加到阻塞队列
    // addWorker 添加失败会走到这里
    if (isRunning(c) && workQueue.offer(command)) {
        // 添加到阻塞队列成功后再重新获取线程池状态
        int recheck = ctl.get();
        // 如果当前线程池状态不是运行中,则从阻塞队列中移除掉刚刚添加的任务
        // remove 成功了就 reject 该任务,否则说明任务已经被执行了
        if (!isRunning(recheck) && remove(command))
            // 移除掉任务后跑出拒绝处理异常
            reject(command);
        // 否则如果当前线程池线程空,则添加一个线程
        else if (workerCountOf(recheck) == 0)
            /*
                addWorker(null, false) 也就是创建一个线程,但并没有传入任务(null),因为任务已经被添加到                 workQueue 中了(remove(command) 失败才进入此 if 代码块),所以 worker 在执行的时候,会直                 接从 workQueue 中获取任务(getTask())。
                */
            // addWorker(null, false) 为了保证线程池在 RUNNING 状态下必须要有一个线程来执行任务
            addWorker(null, false);
    }
    // 3. 阻塞队列已满,则新增线程处理任务
    else if (!addWorker(command, false))
        // 新增线程处理任务失败,抛出拒绝处理异常
        reject(command);
}
reject
final void reject(Runnable command) {
    handler.rejectedExecution(command, this);
}
addWorker
// firstTask:要执行的任务
// core:是否添加到核心线程池
private boolean addWorker(Runnable firstTask, boolean core) {
    retry:
    for (;;) {
        int c = ctl.get();
        int rs = runStateOf(c);

        // rs >= SHUTDOWN 说明当前线程池不再接受新的任务
        // 但是线程池状态为 SHUTDOWN 并且阻塞队列有任务时,仍可以处理这些任务
        // 此时 firstTask = null,不是新增任务,而是新增线程来处理任务,即:
        // rs == SHUTDOWN && firstTask == null && ! workQueue.isEmpty()

        if (rs >= SHUTDOWN &&
            ! (rs == SHUTDOWN &&
               firstTask == null &&
               ! workQueue.isEmpty()))
            return false;

        // corePoolSize 未满,核心线程的数量加 1
        // 获取最新的核心线程池数量
        // 获取最新的线程池状态(和原先状态不一致,重新循环)
        for (;;) {
            // 线程池中的线程数
            int wc = workerCountOf(c);
            // 如果线程数超限,则返回
            if (wc >= CAPACITY ||
                wc >= (core ? corePoolSize : maximumPoolSize))
                return false;
            // 自增 workerCount,如果成功,则退出 retry 循环
            // 否则更新 ctl,然后判断当前状态是否改变,已改变就从外层 for 循环开始重新执行(外层 for 循环有判断状态逻辑)
            // 如果状态没有改变,则重试自增 workerCount 操作
            if (compareAndIncrementWorkerCount(c))
                break retry;
            // 设置 workerCount 失败,重新获取线程池状态
            c = ctl.get();  // Re-read ctl
            // 如果线程池当前的状态和方法开始时的状态一致,则重新循环本层的 for 循环
            if (runStateOf(c) != rs)
                continue retry;
            // else CAS failed due to workerCount change; retry inner loop
        }
    }

    boolean workerStarted = false;
    boolean workerAdded = false;
    Worker w = null;
    
    try {
        // 初始化 worker
        w = new Worker(firstTask);
        // 执行这个任务的线程
        final Thread t = w.thread;
        if (t != null) {
            final ReentrantLock mainLock = this.mainLock;
            // 获取 mianLock 锁,准备启动线程
            // 先判断线程池的状态,再判断线程是否已启动
            mainLock.lock();
            try {
                // Recheck while holding lock.
                // Back out on ThreadFactory failure or if
                // shut down before lock acquired.
                int rs = runStateOf(ctl.get());

                // rs < SHUTDOWN 表示是 RUNNING 状态
                // rs 是 SHUTDOWN 状态并且 firstTask 为 null,向线程池中添加线程,用来处理阻塞队列中的任务
                if (rs < SHUTDOWN ||
                    (rs == SHUTDOWN && firstTask == null)) {
                    // 如果线程已经被 start 过了,则抛出异常,不允许重复调用 start
                    if (t.isAlive()) // precheck that t is startable
                        throw new IllegalThreadStateException();
                    // 添加任务到 HashSet 集合中
                    workers.add(w);
                    int s = workers.size();
                    // 如果 workers 的长度(任务队列长度)大于最大线程数量,则更新最大线程数量
                    // largestPoolSize 记录着线程池中出现过的最大线程数量
                    if (s > largestPoolSize)
                        largestPoolSize = s;
                    workerAdded = true;
                }
            } finally {
                // 释放 mainLock 锁
                mainLock.unlock();
            }
            // 已添加任务到 workers 集合
            if (workerAdded) {
                // 启动线程
                t.start();
                // 线程已启动
                workerStarted = true;
            }
        }
    } finally {
        // 任务添加失败,或者任务添加成功但是启动失败
        if (! workerStarted)
            addWorkerFailed(w);
    }
    return workerStarted;
}
addWorkerFailed
/**
     * Rolls back the worker thread creation.
     * - removes worker from workers, if present
     * - decrements worker count
     * - rechecks for termination, in case the existence of this
     *   worker was holding up termination
     */
private void addWorkerFailed(Worker w) {
    final ReentrantLock mainLock = this.mainLock;
    // 获取 mainLock 锁
    mainLock.lock();
    try {
        // 如果 worker 启动失败,则:
        // 1. 如果 worker 不为 null,则从 workers 集合中移除该任务
        if (w != null)
            workers.remove(w);
        // 2. workerCount 自减 1
        decrementWorkerCount();
        // 3. 根据线程池状态进行判断是否结束线程池
        tryTerminate();
    } finally {
        // 释放 mainLock 锁
        mainLock.unlock();
    }
}
tryTerminate
// 根据线程池状态进行判断是否结束线程池
final void tryTerminate() {
    for (;;) {
        int c = ctl.get();

        // 当前线程池的状态为以下几种情况时,直接返回:

        // 1. 因为还在运行中,不能停止
        if (isRunning(c) ||
            // 2. TIDYING 或 TERMINATED,其它线程已经在结束线程池了,无需当前线程来结束
            runStateAtLeast(c, TIDYING) ||
            // 3. 调用 shutdown() 方法后的状态是 SHUTDOWN,但是仍然可以处理队列中的任务
            (runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty()))
            return;
        // 4. 如果线程数量不为 0,则中断一个空闲的工作线程,并返回
        if (workerCountOf(c) != 0) { // Eligible to terminate
            /**
			   当 shutdown() 方法被调用时,会执行 interruptIdleWorkers(),
			   此方法会先检查线程是否是空闲状态,如果发现线程不是空闲状态,才会中断线程,
			   中断线程让在任务队列中阻塞的线程醒过来。但是如果在执行 interruptIdleWorkers() 方法时,
			   线程正在运行,此时并没有被中断;如果线程执行完任务后,然后又去调用了getTask (),
			   这时如果 workQueue 中没有任务了,调用 workQueue.take() 时就会一直阻塞。
			   这时该线程便错过了 shutdown()  的中断信号,若没有额外的操作,线程会一直处于阻塞的状态。
			   所以每次在工作线程结束时调用 tryTerminate 方法来尝试中断一个空闲工作线程,
			   避免在队列为空时取任务一直阻塞的情况,弥补了 shutdown() 中丢失的信号。
                */
            interruptIdleWorkers(ONLY_ONE);
            return;
        }

        // 只能是以下情形会继续下面的逻辑:结束线程池。
        // 1. SHUTDOWN 状态,这时不再接受新任务而且任务队列也空了
        // 2. STOP 状态,当调用了 shutdownNow 方法

        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            // 5. 这里尝试设置状态为 TIDYING,如果设置成功,则调用 terminated 方法
            if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {
                try {
                    // terminated 方法默认什么都不做,留给子类实现
                    terminated();
                } finally {
                    // 设置状态为 TERMINATED
                    ctl.set(ctlOf(TERMINATED, 0));
                    termination.signalAll();
                }
                return;
            }
        } finally {
            mainLock.unlock();
        }
        // else retry on failed CAS
    }
}
interruptWorkers
// 中断所有已启动线程
private void interruptWorkers() {
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        for (Worker w : workers)
            w.interruptIfStarted();
    } finally {
        mainLock.unlock();
    }
}
interruptIdleWorkers 相关方法
// 中断所有空闲线程
private void interruptIdleWorkers(boolean onlyOne) {
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        for (Worker w : workers) {
            Thread t = w.thread;
            // 首先看当前线程是否已经中断,如果没有中断,就看线程是否处于空闲状态 
            // 如果能获得线程关联的 Worker 锁,说明线程处于空闲状态,可以中断 
            // 否则说明线程不能中断
            if (!t.isInterrupted() && w.tryLock()) {
                try {
                    t.interrupt();
                } catch (SecurityException ignore) {
                } finally {
                    w.unlock();
                }
            }
            // 如果 onlyOne 为 true,只尝试中断第一个线程
            if (onlyOne)
                break;
        }
    } finally {
        mainLock.unlock();
    }
}

private void interruptIdleWorkers() {
    interruptIdleWorkers(false);
}

private static final boolean ONLY_ONE = true;
runWorker
final void runWorker(Worker w) {
    // 获取当前线程(等价于 w 的 thread)
    Thread wt = Thread.currentThread();
    // 获取当前 Worker 对象的任务 
    Runnable task = w.firstTask;
    w.firstTask = null;
    // unlock 源码:release(1); 
    // new Woker() 时,设置了 state 是 -1,这里调用 unlock,作用是将 state 位置为 0,允许 worker 中断
    w.unlock(); // allow interrupts
    // 用来标记线程是正常退出循环还是异常退出
    boolean completedAbruptly = true;
    try {
        // 如果任务不为空,说明是刚创建线程,
        // 如果任务为空,则从队列中取任务,如果队列没有任务,线程就会阻塞在这里(getTask 方法里调用了队列的 take 阻塞方法)。这里从阻塞队列中获取任务并执行,而不用新建线程去执行,这就是线程池的优势。
        // task 执行完后在 finally 块中将其设置成了 null,所以第一次 worker 中 firstTask 执行完成后,后面都会从阻塞队列中获取任务来处理
        while (task != null || (task = getTask()) != null) {
            // worker 获取独占锁,准备执行任务
            w.lock();

            /**
                第一个条件 runStateAtLeast(ctl.get(), STOP) 为 true,表示状态 >= STOP,而线程没有被中断,则线程需要被中断
                第一个条件 runStateAtLeast(ctl.get(), STOP) 为 false,则再去判断当前线程是否被中断,如果被中断,则继续判断是否线程池状态 >= STOP
                因为前面调用了 Thread.interrupted(),所以 wt.isInterrupted() 为 false,即线程没有被中断,则线程需要被中断
            */
            // If pool is stopping, ensure thread is interrupted;
            // if not, ensure thread is not interrupted.  This
            // requires a recheck in second case to deal with
            // shutdownNow race while clearing interrupt
            if ((runStateAtLeast(ctl.get(), STOP) ||
                 (Thread.interrupted() &&
                  runStateAtLeast(ctl.get(), STOP))) &&
                !wt.isInterrupted())
                wt.interrupt();

            try {
                // 任务执行之前做一些处理,空函数,需要用户定义处理逻辑
                beforeExecute(wt, task);
                Throwable thrown = null;
                try {
                    // 执行任务,也就是提交到线程池里的任务,且捕获异常
                    task.run();
                } catch (RuntimeException x) {
                    thrown = x; throw x;
                } catch (Error x) {
                    thrown = x; throw x;
                } catch (Throwable x) {
                    // 因为 runnable 方法不能抛出 checkedException ,所以这里
                    // 将异常包装成 Error 抛出
                    thrown = x; 
                    throw new Error(x);
                } finally {
                    // 任务执行完之后做一些处理,默认空函数
                    afterExecute(task, thrown);
                }
            } finally {
                task = null;
                w.completedTasks++;
                w.unlock();
            }
        }
        // 如果在执行 task.run() 时抛出异常,是不会走到这里的
        // 所以抛出异常时,completedAbruptly 是 true,表示线程异常退出
        completedAbruptly = false;
    } finally {
        // 线程
        processWorkerExit(w, completedAbruptly);
    }
}
getTask
// 从线程池阻塞队列中取任务
// 返回 null 前(线程正常销毁退出),都会进行 workerCount 减 1 操作
private Runnable getTask() {
    boolean timedOut = false; // Did the last poll() time out?

    for (;;) {
        int c = ctl.get();
        // 获取当前线程池状态
        int rs = runStateOf(c);

        // rs >= STOP(线程池不接收任务,也不处理阻塞队列中的任务)
        // 或者 
        // rs >= SHUTDOWN 且 阻塞队列为空(线程池不接收任务,且把阻塞队列中的任务处理完了)
        // 这时候将核心线程的数量减 1,并直接返回 null,线程不再继续处理任务
        if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
            // 方法实现:do {} while (! compareAndDecrementWorkerCount(ctl.get()));
            // 不停的获取线程数量,并进行核心线程数的自减操作
            decrementWorkerCount();
            // 当前线程需要销毁
            return null;
        }

        // 获取当前线程池工作线程数
        int wc = workerCountOf(c);

        // Are workers subject to culling?
        // timed 用于判断是否需要进行超时控制。
        // allowCoreThreadTimeOut 默认是 false,也就是核心线程不允许进行超时
        // wc > corePoolSize,表示当前线程池中的线程数量大于 corePoolSize,对于超过核心线程数量的这些线程,需要进行超时控制
        boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;

        // wc > maximumPoolSize 需要销毁线程(setMaximumPoolSize 可能会导致 maximumPoolSize 变小了)
        // (这里 wc 要么 > maximumPoolSize,要么 > corePoolSize,所以销毁线程不会对线程池造成影响)
        // timed && timedOut 说明线程空闲超时了,需要销毁线程
        if ((wc > maximumPoolSize || (timed && timedOut))
            // wc 大于 1 或 阻塞队列为空
            && (wc > 1 || workQueue.isEmpty())) {
            // 线程数自减
            if (compareAndDecrementWorkerCount(c))
                return null;
            continue;
        }

        try {
            // 根据 timed 来判断 workQueue 是超时等待获取队列任务,还是一直阻塞等待任务
            Runnable r = timed
                // 超时等待:当超过给定 keepAliveTime 时间还没有获取到任务时,则会返回 null,此时 Woker 会被销毁(getTask 方法返回 null 时,在 runWorker 方法中会跳出 while 循环,然后会执行 processWorkerExit 方法)
                // keepAliveTime 就是线程的空闲时间(所以可以用来作为获取任务的等待超时时间)
                ? workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS)
                // 阻塞等待:一直阻塞,直到有任务进来
                : workQueue.take();
            if (r != null)
                return r;
            // 获取任务超时,需要重新走循环获取任务
            timedOut = true;
        } catch (InterruptedException retry) {
            // 如果获取任务时当前线程发生了中断,则设置 timedOut 为 false 并返回循环重试
            timedOut = false;
        }
    }
}
processWorkerExit
// processWorkerExit 方法逻辑和 addWorkerFailed 方法逻辑类似
// processWorkerExit 需要将该线程已完成的任务数加到线程池的所有已完成任务中
private void processWorkerExit(Worker w, boolean completedAbruptly) {
    // 如果 completedAbruptly 值为 true,则说明线程执行时出现了异常,将 workerCount 减 1
    // 如果线程执行时没有出现异常,说明在 getTask() 方法中可能已经已经对 workerCount 进行了减 1 操作,这里就不必再减了
    if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted
        decrementWorkerCount();

    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        // 统计完成的任务数
        completedTaskCount += w.completedTasks;
        // 从 workers 中移除,也就表示着从线程池中移除了一个工作线程
        workers.remove(w);
    } finally {
        mainLock.unlock();
    }

    // 根据线程池状态进行判断是否结束线程池
    tryTerminate();

    int c = ctl.get();
    
    // getTask 方法中,线程数多了要销毁线程
    // 这里线程数少了,要添加线程
    // 此时状态是 RUNNING 或者 SHUTDOWN
    if (runStateLessThan(c, STOP)) {
        // 不是异常退出,说明从 getTask() 返回 null 导致的退出
        if (!completedAbruptly) {
            // 最小线程数,allowCoreThreadTimeOut 为 true,则核心线程可以被销毁,所以数量最少可以为 0,否则最少要保留 corePoolSize 个核心线程
            int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
            if (min == 0 && !workQueue.isEmpty())
                // 如果 allowCoreThreadTimeOut = true,并且等待队列有任务,至少保留一个线程来处理任务
                // 修正最小核心线程数为 1
                min = 1;
            // 走到这里,说明 allowCoreThreadTimeOut = false,则 workerCount 不少于 corePoolSize
            if (workerCountOf(c) >= min)
                return; // replacement not needed
        }
        // 异常退出
        // 线程池中,当前活跃线程数不满足大于等于 min,要给线程池添加一个线程来处理任务
        addWorker(null, false);
    }
}
hook 方法
/* Extension hooks */

protected void beforeExecute(Thread t, Runnable r) { }

protected void afterExecute(Runnable r, Throwable t) { }

/**
     * Method invoked when the Executor has terminated.  Default
     * implementation does nothing. Note: To properly nest multiple
     * overridings, subclasses should generally invoke
     * {@code super.terminated} within this method.
     */
protected void terminated() { }
shutdown、shutdownNow 相关方法
/*
     * Methods for controlling interrupts to worker threads.
     */

/**
     * If there is a security manager, makes sure caller has
     * permission to shut down threads in general (see shutdownPerm).
     * If this passes, additionally makes sure the caller is allowed
     * to interrupt each worker thread. This might not be true even if
     * first check passed, if the SecurityManager treats some threads
     * specially.
     */
private void checkShutdownAccess() {
    SecurityManager security = System.getSecurityManager();
    if (security != null) {
        security.checkPermission(shutdownPerm);
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            for (Worker w : workers)
                security.checkAccess(w.thread);
        } finally {
            mainLock.unlock();
        }
    }
}

void onShutdown() {
}

final boolean isRunningOrShutdown(boolean shutdownOK) {
    int rs = runStateOf(ctl.get());
    return rs == RUNNING || (rs == SHUTDOWN && shutdownOK);
}

/**
* 取出阻塞队列中没有被执行的任务并返回
     * Drains the task queue into a new list, normally using
     * drainTo. But if the queue is a DelayQueue or any other kind of
     * queue for which poll or drainTo may fail to remove some
     * elements, it deletes them one by one.
     */
private List drainQueue() {
    BlockingQueue q = workQueue;
    ArrayList taskList = new ArrayList();
    // drainTo 一次性从 BlockingQueue 获取所有可用的数据对象(还可以指定获取数据的个数)
    // 通过该方法,可以提升获取数据效率,不需要多次分批加锁或释放锁
    q.drainTo(taskList);
    if (!q.isEmpty()) {
        // 将 List 转换为数组,循环,取出 drainTo 方法未取完的元素
        for (Runnable r : q.toArray(new Runnable[0])) {
            if (q.remove(r))
                taskList.add(r);
        }
    }
    return taskList;
}

public void shutdown() {
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        // 检查当前线程是否有关闭线程池的权限
        checkShutdownAccess();
        // 将线程池状态提升为 SHUTDOWN
        advanceRunState(SHUTDOWN);
        // 中断空闲线程,这里最终调用 interruptIdleWorkers(false);
        interruptIdleWorkers();
        // hook 方法,默认为空,让用户在线程池关闭时可以做一些操作
        onShutdown(); // hook for ScheduledThreadPoolExecutor
    } finally {
        mainLock.unlock();
    }
    // 检查是否可以关闭线程池
    tryTerminate();
}

public List shutdownNow() {
    List tasks;
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        // 检查线程是否具有关闭线程池的权限
        checkShutdownAccess();
        // 将线程池状态提升为 STOP
        advanceRunState(STOP);
        // 中断所有工作线程,无论是否空闲
        interruptWorkers();
        // 取出队列中没有被执行的任务
        tasks = drainQueue();
    } finally {
        mainLock.unlock();
    }
    tryTerminate();
    return tasks;
}

public boolean isShutdown() {
    return ! isRunning(ctl.get());
}

public boolean isTerminating() {
    int c = ctl.get();
    return ! isRunning(c) && runStateLessThan(c, TERMINATED);
}

public boolean isTerminated() {
    return runStateAtLeast(ctl.get(), TERMINATED);
}

// 等待线程池状态变为 TERMINATED 则返回,或者时间超时。由于整个过程独占锁,所以一般调用 shutdown 或者 shutdownNow 后使用
public boolean awaitTermination(long timeout, TimeUnit unit)
    throws InterruptedException {
    long nanos = unit.toNanos(timeout);
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        for (;;) {
            // 如果线程池状态为 TERMINATED,则返回 true
            if (runStateAtLeast(ctl.get(), TERMINATED))
                return true;
            // 如果超时了,并且状态还不是 TERMINATED,则返回 false
            if (nanos <= 0)
                return false;
            // 超时等待
            nanos = termination.awaitNanos(nanos);
        }
    } finally {
        mainLock.unlock();
    }
}
RejectedExecutionHandler
public interface RejectedExecutionHandler {
    //  r 为请求执行的任务,executor 为线程池
    void rejectedExecution(Runnable r, ThreadPoolExecutor executor);
}

/* Predefined RejectedExecutionHandlers */

/**
直接在调用者线程中,运行当前被丢弃的任务
这样做不会真的丢弃任务,但是,任务提交线程的性能极有可能会急剧下降
     * A handler for rejected tasks that runs the rejected task
     * directly in the calling thread of the {@code execute} method,
     * unless the executor has been shut down, in which case the task
     * is discarded.
     */
public static class CallerRunsPolicy implements RejectedExecutionHandler {
    /**
         * Creates a {@code CallerRunsPolicy}.
         */
    public CallerRunsPolicy() { }

    /**
         * Executes task r in the caller's thread, unless the executor
         * has been shut down, in which case the task is discarded.
         *
         * @param r the runnable task requested to be executed
         * @param e the executor attempting to execute this task
         */
    public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
        if (!e.isShutdown()) {
            r.run();
        }
    }
}

/**
直接抛出异常
     * A handler for rejected tasks that throws a
     * {@code RejectedExecutionException}.
     */
public static class AbortPolicy implements RejectedExecutionHandler {
    /**
         * Creates an {@code AbortPolicy}.
         */
    public AbortPolicy() { }

    /**
         * Always throws RejectedExecutionException.
         *
         * @param r the runnable task requested to be executed
         * @param e the executor attempting to execute this task
         * @throws RejectedExecutionException always
         */
    public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
        // 抛出 RejectedExecutionException 异常
        throw new RejectedExecutionException("Task " + r.toString() +
                                             " rejected from " +
                                             e.toString());
    }
}

/**
丢弃无法处理的任务
     * A handler for rejected tasks that silently discards the
     * rejected task.
     */
public static class DiscardPolicy implements RejectedExecutionHandler {
    /**
         * Creates a {@code DiscardPolicy}.
         */
    public DiscardPolicy() { }

    /**
         * Does nothing, which has the effect of discarding task r.
         *
         * @param r the runnable task requested to be executed
         * @param e the executor attempting to execute this task
         */
    public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
        // 不处理直接丢弃掉任务
    }
}

/**
丢弃队列中最早被阻塞的线程
     * A handler for rejected tasks that discards the oldest unhandled
     * request and then retries {@code execute}, unless the executor
     * is shut down, in which case the task is discarded.
     */
public static class DiscardOldestPolicy implements RejectedExecutionHandler {
    /**
         * Creates a {@code DiscardOldestPolicy} for the given executor.
         */
    public DiscardOldestPolicy() { }

    /**
         * Obtains and ignores the next task that the executor
         * would otherwise execute, if one is immediately available,
         * and then retries execution of task r, unless the executor
         * is shut down, in which case task r is instead discarded.
         *
         * @param r the runnable task requested to be executed
         * @param e the executor attempting to execute this task
         */
    public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
        if (!e.isShutdown()) {
            // 从线程池中的阻塞队列中取出第一个元素(丢弃队列中最久的一个待处理任务)
            e.getQueue().poll();
            // 将请求处理的任务 r 再次放到线程池中去执行
            e.execute(r);
        }
    }
}

ScheduledThreadPoolExecutor 源码

ScheduledThreadPoolExecutor 源码后面再分析。