LOJ 数列分块入门 6


\(\text{Solution}\)

涉及到插入,分块需要动态维护块内的元素及相对位置
于是妙用 \(\text{vector}\)
学到了 \(insert\) 操作,在某个迭代器前插入元素
这样我们对元数列分块,块长 \(\sqrt n\)
每个块用 \(\text{vector}\) 维护
插入时一块一块地找到合适块的合适位置,用 \(insert\) 插入容器(复杂度与插入位置到末元素长度线性相关)

\(\text{Solution}\)

#include  
#include 
#include 
#define re register
using namespace std;

const int N = 1e5 + 5;
int n, a[N], st[N], ed[N], id[N];
vector Q[N];

inline void prepare()
{
	int num = sqrt(n);
	for(re int i = 1; i <= num; i++)
	{
		st[i] = ed[i - 1] + 1, ed[i] = (i == num ? n : ed[i - 1] + n / num);
		for(re int j = st[i]; j <= ed[i]; j++) id[j] = i;
	}
	for(re int i = 1; i <= n; i++) Q[id[i]].push_back(a[i]);
}
inline void Insert(int x, int v)
{
	int cur = 0, p = 0;
	while (cur < x) cur += Q[++p].size();
	Q[p].insert(Q[p].begin() + Q[p].size() - cur + x - 1, v);
}
inline int Query(int x)
{
	int cur = 0, p = 0;
	while (cur < x) cur += Q[++p].size();
	return Q[p][Q[p].size() - cur + x - 1];
}

int main()
{
	scanf("%d", &n);
	for(re int i = 1; i <= n; i++) scanf("%d", &a[i]);
	prepare();
	for(re int i = 1, op, l, r, c; i <= n; i++)
	{
		scanf("%d%d%d%d", &op, &l, &r, &c);
		if (!op) Insert(l, r);
		else printf("%d\n", Query(r));
	}
}