LOJ 数列分块入门 6
\(\text{Solution}\)
涉及到插入,分块需要动态维护块内的元素及相对位置
于是妙用 \(\text{vector}\)
学到了 \(insert\) 操作,在某个迭代器前插入元素
这样我们对元数列分块,块长 \(\sqrt n\)
每个块用 \(\text{vector}\) 维护
插入时一块一块地找到合适块的合适位置,用 \(insert\) 插入容器(复杂度与插入位置到末元素长度线性相关)
\(\text{Solution}\)
#include
#include
#include
#define re register
using namespace std;
const int N = 1e5 + 5;
int n, a[N], st[N], ed[N], id[N];
vector Q[N];
inline void prepare()
{
int num = sqrt(n);
for(re int i = 1; i <= num; i++)
{
st[i] = ed[i - 1] + 1, ed[i] = (i == num ? n : ed[i - 1] + n / num);
for(re int j = st[i]; j <= ed[i]; j++) id[j] = i;
}
for(re int i = 1; i <= n; i++) Q[id[i]].push_back(a[i]);
}
inline void Insert(int x, int v)
{
int cur = 0, p = 0;
while (cur < x) cur += Q[++p].size();
Q[p].insert(Q[p].begin() + Q[p].size() - cur + x - 1, v);
}
inline int Query(int x)
{
int cur = 0, p = 0;
while (cur < x) cur += Q[++p].size();
return Q[p][Q[p].size() - cur + x - 1];
}
int main()
{
scanf("%d", &n);
for(re int i = 1; i <= n; i++) scanf("%d", &a[i]);
prepare();
for(re int i = 1, op, l, r, c; i <= n; i++)
{
scanf("%d%d%d%d", &op, &l, &r, &c);
if (!op) Insert(l, r);
else printf("%d\n", Query(r));
}
}