力扣01背包理论基础
背包最大重量为4,物品如下,问背包能背的物品最大价值是多少?
二维dp数组01背包
1.确定dp数组以及下标的含义
dp[i][j]表示从下标为[0-i]的物品中任意取,放进容量为j的背包,价值总和最大为多少
2.确定递推公式
两个方向推导
- 不放物品i:dp[i][j]=dp[i-1][j]
- 放物品:dp[i][j]=dp[i-1][j-weight[i]] + value[i]
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
3.dp数组初始化
如果背包容量j是0的话,dp[i][0],无论选取哪些物品,背包价值总和一定为0
dp[0][j],i为0,存放编号0的物品时,各个容量的背包能存放的最大价值
- j
- j>=weight[0] , dp[0][j] = value[0]
4.确定遍历顺序
从左到右,从上到下
5.举例推导
代码:
public static void main(String[] args) { int[] weight = {1, 3, 4}; int[] value = {15, 20, 30}; int bagSize = 4; testWeightBagProblem(weight, value, bagSize); } public static void testWeightBagProblem(int[] weight, int[] value, int bagSize){ int wLen = weight.length, value0 = 0; //定义dp数组:dp[i][j]表示背包容量为j时,前i个物品能获得的最大价值 int[][] dp = new int[wLen + 1][bagSize + 1]; //初始化:背包容量为0时,能获得的价值都为0 for (int i = 0; i <= wLen; i++){ dp[i][0] = value0; } //遍历顺序:先遍历物品,再遍历背包容量 for (int i = 1; i <= wLen; i++){ for (int j = 1; j <= bagSize; j++){ if (j < weight[i - 1]){ dp[i][j] = dp[i - 1][j]; }else{ dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - weight[i - 1]] + value[i - 1]); } } } //打印dp数组 for (int i = 0; i <= wLen; i++){ for (int j = 0; j <= bagSize; j++){ System.out.print(dp[i][j] + " "); } System.out.print("\n"); } }