题目链接
题意分析
\[\sum_{i=1}^n\sum_{j=1}^mμ^2(gcd(i,j))
\]
\[=\sum_{i=1}^n\sum_{j=1}^m\sum_{d=1}^{min(n,m)}μ^2(d)[gcd(i,j)==d]
\]
\[=\sum_{d=1}^{min(n,m)}μ^2(d)\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}[gcd(i,j)==1]
\]
\[=\sum_{d=1}^{min(n,m)}μ^2(d)\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}\sum_{d|gcd(i,j)}μ(d)
\]
\[=\sum_{d=1}^{min(n,m)}μ^2(d)\sum_{k=1}^{min(\lfloor\frac{n}{d}\rfloor,\lfloor\frac{m}{d}\rfloor)}μ(d)\lfloor\frac{n}{kd}\rfloor\lfloor\frac{m}{kd}\rfloor
\]
令\(T=kd\)
\[\sum_{T=1}^{min(n,m)}\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor\sum_{d|T}μ^2(d)μ(\frac{T}{d})
\]
由于只有完全平方数
\[\sum_{d|T}μ^2(d)μ(\frac{T}{d})=μ(\sqrt{T})
\]
其余的话\(d\)以及\(\frac{T}{d}\)会互相抵消
所以我们空间时间均优化到\(O(\sqrt{n})\)
CODE:
#include
#include
#include
#include
#include
#include
#include
#include
#include
HEOI 2019 RP++