TF2实现语义分割网络SegNet



"""
Created on 2020/11/29 19:36.

@Author: yubaby@anne
@Email: yhaif@foxmail.com
"""


from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, BatchNormalization
from tensorflow.keras.layers import  UpSampling2D
from tensorflow.keras import Model


def build_model(tif_size, bands, class_num):
    from pathlib import Path
    import sys
    print('===== %s =====' % Path(__file__).name)
    print('===== %s =====' % sys._getframe().f_code.co_name)

    inputs = Input(shape=(tif_size, tif_size, bands))

    # encoder
    x = Conv2D(64, (3, 3), strides=(1, 1), padding='same', activation='relu')(inputs)
    x = BatchNormalization()(x)
    x = Conv2D(64, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
    x = BatchNormalization()(x)
    x = MaxPooling2D((2, 2), strides=(2, 2))(x)  # (128, 128)

    x = Conv2D(128, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
    x = BatchNormalization()(x)
    x = Conv2D(128, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
    x = BatchNormalization()(x)
    x = MaxPooling2D((2, 2), strides=(2, 2))(x)  # (64, 64)

    x = Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
    x = BatchNormalization()(x)
    x = Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
    x = BatchNormalization()(x)
    x = Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
    x = BatchNormalization()(x)
    x = MaxPooling2D((2, 2), strides=(2, 2))(x)  # (32, 32)

    x = Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
    x = BatchNormalization()(x)
    x = Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
    x = BatchNormalization()(x)
    x = Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
    x = BatchNormalization()(x)
    x = MaxPooling2D((2, 2), strides=(2, 2))(x)  # (16, 16)

    x = Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
    x = BatchNormalization()(x)
    x = Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
    x = BatchNormalization()(x)
    x = Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
    x = BatchNormalization()(x)
    x = MaxPooling2D((2, 2), strides=(2, 2))(x)  # (8, 8)

    # decoder
    x = UpSampling2D(size=(2, 2))(x)  # (16, 16)
    x = Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
    x = BatchNormalization()(x)
    x = Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
    x = BatchNormalization()(x)
    x = Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
    x = BatchNormalization()(x)

    x = UpSampling2D(size=(2, 2))(x)  # (32, 32)
    x = Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
    x = BatchNormalization()(x)
    x = Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
    x = BatchNormalization()(x)
    x = Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
    x = BatchNormalization()(x)

    x = UpSampling2D(size=(2, 2))(x)  # (64, 64)
    x = Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
    x = BatchNormalization()(x)
    x = Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
    x = BatchNormalization()(x)
    x = Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
    x = BatchNormalization()(x)

    x = UpSampling2D(size=(2, 2))(x)  # (128, 128)
    x = Conv2D(128, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
    x = BatchNormalization()(x)
    x = Conv2D(128, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
    x = BatchNormalization()(x)

    x = UpSampling2D(size=(2, 2))(x)  # (256, 256)
    x = Conv2D(64, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
    x = BatchNormalization()(x)
    x = Conv2D(64, (3, 3), strides=(1, 1), padding='same', activation='relu')(x)
    x = BatchNormalization()(x)

    # output
    x = Conv2D(class_num, (1, 1), strides=(1, 1), padding='same', activation='softmax')(x)

    mymodel = Model(inputs, x)
    return mymodel