题解 P6055 【[RC-02] GCD】
\[ans=\sum_{i=1}^N\sum_{j=1}^N\sum_{p=1}^{\left\lfloor\dfrac{N}{j}\right\rfloor}\sum_{q=1}^{\left\lfloor\dfrac{N}{j}\right\rfloor}[gcd(i,j)=1][gcd(p,q)=1]
\]
方法1:
\[\begin{aligned} ans & = \sum_{i=1}^N\sum_{j=1}^N\sum_{p=1}^{\left\lfloor\dfrac{N}{j}\right\rfloor}\sum_{q=1}^{\left\lfloor\dfrac{N}{j}\right\rfloor}[gcd(i,j)=1][gcd(p,q)=1] \\ & = \sum_{i=1}^{N}\sum_{j=1}^N\sum_{p=1}^{N}\sum_{q=1}^N[gcd(i,j)=1][gcd(p,q)=j] \\ & = \sum_{i=1}^N\sum_{p=1}^{N}\sum_{q=1}^N[gcd(i,p,q)=1] \\ & = \sum_{d=1}^N\mu(d)\left\lfloor\dfrac{N}{d}\right\rfloor^3 \end{aligned} \]方法2:
\[\begin{aligned} ans & =\sum_{i=1}^{N}\sum_{j=1}^N(\sum_{d|gcd(i,j)}\mu(d))(\sum_{p=1}^{\left\lfloor\dfrac{N}{j}\right\rfloor}\sum_{q=1}^{\left\lfloor\dfrac{N}{j}\right\rfloor}\sum_{t|gcd(p,q)}\mu(t)) \\ & =\sum_{i=1}^{N}\sum_{j=1}^N(\sum_{d|gcd(i,j)}\mu(d))(\sum_{t=1}^{\left\lfloor\dfrac{N}{j}\right\rfloor}\mu(t)\left\lfloor\dfrac{N}{jt}\right\rfloor^2) \\ & =\sum_{d=1}^N\mu(d)\left\lfloor\dfrac{N}{d}\right\rfloor\sum_{j=1}^{\left\lfloor\dfrac{N}{d}\right\rfloor}1\cdot\sum_{t=1}^{\left\lfloor\dfrac{N}{d}\right\rfloor}\left\lfloor\dfrac{N}{dt}\right\rfloor^2\sum_{g|t}\mu(t) \\ & =\sum_{d=1}^N\mu(d)\left\lfloor\dfrac{N}{d}\right\rfloor\sum_{j=1}^{\left\lfloor\dfrac{N}{d}\right\rfloor}1\cdot\sum_{t=1}^{\left\lfloor\dfrac{N}{d}\right\rfloor}\left\lfloor\dfrac{N}{dt}\right\rfloor^2[t=1] \\ & =\sum_{d=1}^N\mu(d)\left\lfloor\dfrac{N}{d}\right\rfloor\sum_{j=1}^{\left\lfloor\dfrac{N}{d}\right\rfloor}1\cdot\left\lfloor\dfrac{N}{d}\right\rfloor^2 \\ & =\sum_{d=1}^N\mu(d)\left\lfloor\dfrac{N}{d}\right\rfloor^3 \end{aligned} \]然后数论分块+杜教筛即可
#include
#include