洛谷 P4145 上帝造题的七分钟 2 / SP2713 GSS4
Description
给出一个长度为 \(b\) 的数列 \(a\),要进行 \(m\) 次操作,每次操作输入 \(k\), \(l\), \(r\),要求支持以下两种操作:
-
\(k=0\) 表示给 \([l,r]\) 中的每个数开平方(下取整)。
-
\(k=1\) 表示询问 \([l,r]\) 中各个数的和。
数据中有可能 \(l>r\),所以遇到这种情况请交换 \(l\) 和 \(r\)。
Constraints
对于 \(30\%\) 的数据,\(1\le n,m\le 10^3\),数列中的数不超过 \(32767\)。
对于 \(100\%\) 的数据,\(1\le n,m\le 10^5\),\(1\le l,r\le n\),数列中的数大于 \(0\),且不超过 \(10^{12}\)。
Solution
区间求和操作思路比较简单,直接使用树状数组维护即可。
再思考区间修改,通过举几个例子可以发现,任意数开方 \(6\) 次之后必定变成 \(1\),而变成 \(1\) 之后无论怎样开方数值不会改变,可以从这里入手。
考虑把变成 \(1\) 的位置在区间修改时节省复杂度,可以想到用并查集维护。
令 \(fa[i]\) 表示 \(a[i]\) 及以后第一个当前不为 \(1\) 的数的位置,用来合并掉已变成 \(1\) 的区间,每次合并都是向右合并,但由于 \(a[n]\) 也可能开方成 \(1\),所以也要记录 \(n + 1\) 位置,使得 \(n\) 位置能够合并。
考虑开方操作,设 \(sq = sqrt(a[i])\),则这个数减少了 \((a[i] - sq)\),在树状数组中修改减少值。
区间修改可以直接往后不断跳着修改,设置一个指针从 \(l\) 到 \(r\),设当前位置下标为 \(now\),接下来分两种情况:
-
若 \(a[now]\) 开方后变成了 \(1\),则把他的父亲指向 \(now + 1\), 更新 \(a[now]\),同时指针直接跳到这个位置的祖先节点,即 \(now = find(fa[now])\);
-
若 \(a[now]\) 开方后不为 \(1\),则无法合并,指针直接向后移一个位置(即为 \(now + 1\)),他的父亲还是指向自己。
Code:
注意一下最后答案会爆 \(int\),然后可能 \(l\) 和 \(r\) 的顺序是反的。
// by youyou2007 in 2022.
#include
#include
#include
#include
#include
#include
#include
#include
#include