推荐系统资料整理


作者:清华阿罗
链接:https://zhuanlan.zhihu.com/p/67959931
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

网上看到不错的推荐系统资料整理,分享给大家,包括书籍、会议、相关研究人员、论文和一些开源的代码,如下:

1. 书籍

  • Recommender Systems: The Textbook (2016, Charu Aggarwal)
  • Recommender Systems Handbook 2nd Edition (2015, Francesco Ricci)
  • Recommender Systems Handbook 1st Edition (2011, Francesco Ricci)
  • Recommender Systems An Introduction (2011, Dietmar Jannach) slides

2. 会议

  • AAAI (AAAI Conference on Artificial Intelligence)
  • CIKM (ACM International Conference on Information and Knowledge Management)
  • CSCW (ACM Conference on Computer-Supported Cooperative Work & Social Computing)
  • ICDM (IEEE International Conference on Data Mining)
  • IJCAI (International Joint Conference on Artificial Intelligence)
  • ICLR (International Conference on Learning Representations)
  • ICML (International Conference on Machine Learning)
  • IUI (International Conference on Intelligent User Interfaces)
  • NIPS (Neural Information Processing Systems)
  • RecSys (ACM Conference on Recommender Systems)
  • SDM (SIAM International Conference on Data Mining)
  • SIGIR (ACM SIGIR Conference on Research and development in information retrieval)
  • SIGKDD (ACM SIGKDD International Conference on Knowledge discovery and data mining)
  • SIGMOD (ACM SIGMOD International Conference on Management of Data)
  • VLDB (International Conference on Very Large Databases)
  • WSDM (ACM International Conference on Web Search and Data Mining)
  • WWW (International World Wide Web Conferences)

3. 研究人员

  • George Karypis (University of Minnesota)
  • Joseph A. Konstan (University of Minnesota)
  • Philip S. Yu (University of Illinons at Chicago)
  • Charu Aggarwal (IBM T. J. Watson Research Center)
  • Martin Ester (Simon Fraser University)
  • Paul Resnick (University of Michigan)
  • Peter Brusilovsky (University of Pittsburgh)
  • Bamshad Mobasher (DePaul University)
  • Alexander Tuzhilin (New York University)
  • Yehuda Koren (Google)
  • Barry Smyth (University College Dublin)
  • Lior Rokach (Ben-Gurion University of the Negev)
  • Loren Terveen (University of Minnesota)
  • Chris Volinsky (AT&T Labs)
  • Ed H. Chi (Google AI)
  • Laks V.S. Lakshmanan (University of British Columbia)
  • Badrul Sarwar (LinkedIn)
  • Francesco Ricci (Free University of Bozen-Bolzano)
  • Robin Burke (University of Colorado, Boulder)
  • Brent Smith (Amazon)
  • Greg Linden (Amazon, Microsoft)
  • Hao Ma (Facebook AI)
  • Giovanni Semeraro (University of Bari Aldo Moro)
  • Dietmar Jannach (University of Klagenfurt)

4. 论文

  • Explainable Recommendation: A Survey and New Perspectives (2018, Yongfeng Zhang)
  • Deep Learning based Recommender System: A Survey and New Perspectives (2018, Shuai Zhang)
  • Collaborative Variational Autoencoder for Recommender Systems (2017, Xiaopeng Li)
  • Neural Collaborative Filtering (2017, Xiangnan He)
  • Deep Neural Networks for YouTube Recommendations (2016, Paul Covington)
  • Wide & Deep Learning for Recommender Systems (2016, Heng-Tze Cheng)
  • Collaborative Denoising Auto-Encoders for Top-N Recommender Systems (2016, Yao Wu)
  • AutoRec: Autoencoders Meet Collaborative Filtering (2015, Suvash Sedhain)
  • Collaborative Deep Learning for Recommender Systems (2015, Hao Wang)
  • Collaborative Filtering beyond the User-Item Matrix A Survey of the State of the Art and Future Challenges (2014, Yue Shi)
  • Deep content-based music recommendation (2013, Aaron van den Oord)
  • Time-aware Point-of-interest Recommendation (2013, Quan Yuan)
  • Location-based and Preference-Aware Recommendation Using Sparse Geo-Social Networking Data (2012, Jie Bao)
  • Context-Aware Recommender Systems for Learning: A Survey and Future Challenges (2012, Katrien Verbert)
  • Exploiting Geographical Influence for Collaborative Point-of-Interest Recommendation (2011, Mao Ye)
  • Recommender Systems with Social Regularization (2011, Hao Ma)
  • The YouTube Video Recommendation System (2010, James Davidson)
  • Matrix Factorization Techniques for Recommender Systems (2009, Yehuda Koren)
  • A Survey of Collaborative Filtering Techniques (2009, Xiaoyuan Su)
  • Collaborative Filtering with Temporal Dynamics (2009, Yehuda Koren)
  • Factorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model (2008, Yehuda Koren)
  • Collaborative Filtering for Implicit Feedback Datasets (2008, Yifan Hu)
  • SoRec: social recommendation using probabilistic matrix factorization (2008, Hao Ma)
  • Flickr tag recommendation based on collective knowledge (2008, Borkur Sigurbjornsson)
  • Restricted Boltzmann machines for collaborative filtering (2007, Ruslan Salakhutdinov)
  • Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions(2005, Gediminas Adomavicius)
  • Evaluating collaborative filtering recommender systems (2004, Jonatan L. Herlocker)
  • Amazon.com Recommendations: Item-to-Item Collaborative Filtering (2003, Greg Linden)
  • Content-boosted collaborative filtering for improved recommendations (2002, Prem Melville)
  • Item-based collaborative filtering recommendation algorithms (2001, Badrul Sarwar)
  • Explaining collaborative filtering recommendations (2000, Jonatan L. Herlocker)
  • An algorithmic framework for performing collaborative filtering (1999, Jonathan L. Herlocker)
  • Empirical analysis of predictive algorithms for collaborative filtering (1998, John S. Breese)
  • Social information filtering: Algorithms for automating "word of mouth" (1995, Upendra Shardanand)
  • GroupLens: an open architecture for collaborative filtering of netnews (1994, Paul Resnick)
  • Using collaborative filtering to weave an information tapestry (1992, David Goldberg)

5. GitHub Repositories

  • List_of_Recommender_Systems (Software, Open Source, Academic, Benchmarking, Applications, Books)
  • Deep-Learning-for-Recommendation-Systems (Papers, Blogs, Worshops, Tutorials, Software)
  • RecommenderSystem-Paper (Papers, Tools, Frameworks)
  • RSPapers (Papers)
  • awesome-RecSys-papers (Papers)
  • DeepRec (Tensorflow Codes)
  • RecQ (Tensorflow Codes)
  • NeuRec (Tensorflow Codes)
  • Surprise (Python Library)
  • LightFM (Python Library)
  • Spotlight (Python Library)
  • python-recsys (Python Library)
  • TensorRec (Python Library)
  • CaseRecommender (Python Library)
  • recommenders (Jupyter Notebook Tutorial)

6. 有用站点

  • WikiCFP (Call For Papers of Conferences, Workshops and Journals - Recommender System)
  • Guide2Research (Top Computer Science Conferences)
  • PapersWithCode (Papers with Code - Recommender System)

7.新增

  • (微软发布的推荐代码)
  • shenweichen/DeepCTR (这篇文章涉及到ctr预估的经典方法,也有一些实现,非常适合做推荐的朋友)

参考:

1.