[ 机器学习 - 吴恩达 ] Linear Algebra review | 3-6 Inverse and transpose (逆和转置)
Not all numbers have an inverse
Matrix inverse:
If A is an \(m\times m\) matrix, and if it has an inverse,
\(I\)是单位矩阵,同时\(A\)是square matrix 即方阵(线性代数领域)。
Matrices that don't have an inverse are "singular or degenerate". (奇异矩阵或退化矩阵)
Matrix Transpose
Example:
\(A=\begin{bmatrix}
1&2&0\\
3&5&9\\
\end{bmatrix}\)??\(A^T=\begin{bmatrix}
1&3\\
2&5\\
0&9\\
\end{bmatrix}\)
Let A be an \(m\times n\) matrix, and let \(B=A^T\).
Then \(B\) is an \(n\times m\) matrix, and