[ 机器学习 - 吴恩达 ] | Linear Algebra review | 3-5 Matrix multiplication properties


Not Commutative (不满足交换律)

Let A and B be matrices. Then in general,

\[A \times B \not= B \times A \]

E.g

\[\begin{bmatrix} 1&1\\ 0&0\\ \end{bmatrix}\begin{bmatrix} 0&0\\ 2&0\\ \end{bmatrix}=\begin{bmatrix} 2&0\\ 0&0\\ \end{bmatrix}\]

\[\begin{bmatrix} 0&0\\ 2&0\\ \end{bmatrix}\times\begin{bmatrix} 1&1\\ 0&0\\ \end{bmatrix}=\begin{bmatrix} 0&0\\ 2&2\\ \end{bmatrix}\]

Associate (满足结合律)

\[A\times B\times C \]

Let \(D=B\times C\). Compute \(A\times D\).

Let \(E=A\times B\). Compute \(E\times C\).

Identity Matrix (单位矩阵)

Denoted (表示) \(I\) (or \(I_{n\times n}\))

Examples of identity matrices:
\(\begin{bmatrix} 1&0\\ 0&1\\ \end{bmatrix}\)??\(\begin{bmatrix} 1&0&0\\ 0&1&0\\ 0&0&1\\ \end{bmatrix}\)
?\(2\times2\)???? \(3\times3\)

For any matrix A,

\(A\cdot I=I\cdot A=A\)

Note:如果\(A\)的维度是\(m\times n\),则这里前后\(I\)的维度分别为\(n\times n\ 和 m\times m\)

看来用叉乘、点乘和不用符号都可以表示矩阵相乘