CCPC2021 广州 K. Magus Night
CCPC2021 广州 K. Magus Night
题意
给定整数区间 \([1,m]\) ,从中可重复的选择 \(n\) 个数,形成一个数列 \(\{a_n\}\) 。问:所有满足 \(\gcd(a_1,...,a_n)\le q\) 并且 \(\text{lcm}(a_1,...,a_n)\ge p\) 的数列的乘积和。
题解
官方题解其实已经很明了了,我这里再做个翻译。题目要求的是 \(\gcd\le q\) 且 \(\text{lcm} \ge p\) 的所有数列的乘积和。根据 \(\gcd|\text{lcm}\) 这一性质可以枚举 \((\gcd,\text{lcm})\) 数对来计算,但此题的 \(\text{lcm}\) 会很大,无法直接枚举所有大于 \(p\) 的 \(\text{lcm}\) ,所以需要转换思路,大的枚举不完,但小的好枚举,于是我们做这么一个容斥:
\[(\gcd\le q,\text{lcm}\ge p)=S-(\gcd>q)-(\gcd\le q,\text{lcm}其中 \((a,b)\) 表示满足 \(a\) 和 \(b\) 条件下的所有数列的乘积和, \(S\) 代表全体数列的乘积和。
全体数列的乘积和可以这么表示:每一个数的取值范围都是 \([1,m]\) ,利用分配律,可知
\[S=(1+2+...+m)(1+2+...+m)...(1+2+...+m)=(1+2+...+m)^n \]然后再求 \((\gcd>q)\) 。这是个经典问题,很容易由容斥算出来。
然后就是 \((\gcd\le q,\text{lcm} 。考虑上述的分配律,我们也可以把满足 \(\gcd=g,\text{lcm}=l\) 的所有数列的乘积和表示成一些数乘积的和。考虑到唯一分解定理,我们使用素数来进行表示。对于两个数 \(a,b\) ,把他们写成唯一分解的形式: 由此可知,一对 \(\gcd,\text{lcm}\) 便确定了素数幂次的上界和下界,利用上述的分配律计算贡献即可。计算的时候需要注意的是,上界和下界必须取到,可以考虑下面的容斥来进行计算: 设下界为 \(L\) ,上界为 \(R\) ,那么 这份代码没有优化,1887ms,过的非常危险。AC代码
#include