Flink CDC 与Hudi整合
介绍
之前写过Flink CDC sink 到 Iceberg中,本篇主要实践如何CDC到hudi中.
什么是hudi?
Hudi is a rich platform to build streaming data lakes with incremental data pipelines
on a self-managing database layer, while being optimized for lake engines and regular batch processing.
hudi 主要解决什么问题?
- HDFS的可伸缩性限制
- 需要在Hadoop中更快地呈现数据
- 没有直接支持对现有数据的更新和删除
- 快速的ETL和建模
- 要检索所有更新的记录,无论这些更新是添加到最近日期分区的新记录还是对旧数据的更新,Hudi都允许用户使用最后一个检查点时间戳。此过程不用执行扫描整个源表的查询
hudi的特性:
- Upserts, Deletes with fast, pluggable indexing.
- Incremental queries, Record level change streams
- Transactions, Rollbacks, Concurrency Control.
- SQL Read/Writes from Spark, Presto, Trino, Hive & more
- Automatic file sizing, data clustering, compactions, cleaning.
- Streaming ingestion, Built-in CDC sources & tools.
- Built-in metadata tracking for scalable storage access.
- Backwards compatible schema evolution and enforcement.
Flink CDC 与 Hudi整合
版本
Flink: 1.13.1
Hudi: 0.10.1
环境搭建
使用本地环境, hadoop 使用之前虚拟机安装的环境
MySQL Docker 安装个镜像,主要用于模拟数据变更,产生binlog数据
dockerpull mysql:latest
docker run -itd--name mysql -p 3306:3306 -e MYSQL_ROOT_PASSWORD=123456 mysql
进入容器,可以使用mysql连接验证:
dockerexec -it 07e946b1fa9a /bin/bash
mysql -uroot -p123456
创建MySQL表:
createtable users
(
id bigint auto_increment primary key,
name varchar(20) null,
birthday timestamp defaultCURRENT_TIMESTAMP not null,
ts timestamp defaultCURRENT_TIMESTAMP not null,
sex int
);
整合代码实践
pom.xml:
<?xml version="1.0" encoding="UTF-8"?>
4.0.0
com.chaplinthink
flink-hudi
1.0-SNAPSHOT
8
8
org.apache.hadoop
hadoop-client
3.2.1
org.apache.hadoop
hadoop-hdfs
3.2.1
javax.servlet
servlet-api
org.apache.hadoop
hadoop-common
3.2.1
org.apache.flink
flink-core
1.13.1
org.apache.flink
flink-streaming-java_2.11
1.13.1
org.apache.flink
flink-connector-jdbc_2.11
1.13.1
org.apache.flink
flink-java
1.13.1
org.apache.flink
flink-clients_2.11
1.13.1
org.apache.flink
flink-table-api-java-bridge_2.11
1.13.1
org.apache.flink
flink-table-common
1.13.1
org.apache.flink
flink-table-planner_2.11
1.13.1
org.apache.flink
flink-table-planner-blink_2.11
1.13.1
org.apache.flink
flink-table-planner-blink_2.11
1.13.1
test-jar
org.apache.flink
flink-runtime-web_2.11
1.13.1
com.ververica
flink-sql-connector-mysql-cdc
2.2.0
org.apache.hudi
hudi-flink-bundle_2.11
0.10.1
mysql
mysql-connector-java
5.1.49
使用FlinkSQL 创建MySQL数据源表、Hudi目标表,通过
INSERT INTO hudi_users2 SELECT *, DATE_FORMAT(birthday, 'yyyyMMdd') FROM mysql_users
将数据写入hudi
核心代码:
final EnvironmentSettings fsSettings = EnvironmentSettings.newInstance()
.useBlinkPlanner()
.inStreamingMode()
.build();
final StreamExecutionEnvironment environment = StreamExecutionEnvironment.getExecutionEnvironment();
environment.setParallelism(1);
environment.enableCheckpointing(3000);
final StreamTableEnvironment tableEnvironment = StreamTableEnvironment.create(environment, fsSettings);
tableEnvironment.getConfig().setSqlDialect(SqlDialect.DEFAULT);
// 数据源表
String sourceDDL = "CREATE TABLE mysql_users (\n" +
" id BIGINT PRIMARY KEY NOT ENFORCED ,\n" +
" name STRING,\n" +
" birthday TIMESTAMP(3),\n" +
" ts TIMESTAMP(3)\n" +
") WITH (\n" +
" 'connector' = 'mysql-cdc',\n" +
" 'hostname' = '192.168.70.3',\n" +
" 'port' = '3306', " +
" 'username' = 'aa',\n" +
" 'password' = 'aa', " +
" 'server-time-zone' = 'Asia/Shanghai'," +
" 'database-name' = 'test',\n" +
" 'table-name' = 'users'\n" +
" )";
/**
* 触发器策略是在完成五次提交后执行压缩
*/
// 输出目标表
String sinkDDL = "CREATE TABLE hudi_users2\n" +
"(\n" +
" id BIGINT PRIMARY KEY NOT ENFORCED,\n" +
" name STRING,\n" +
" birthday TIMESTAMP(3),\n" +
" ts TIMESTAMP(3),\n" +
" `partition` VARCHAR(20)\n" +
") PARTITIONED BY (`partition`) WITH (\n" +
" 'connector' = 'hudi',\n" +
" 'table.type' = 'MERGE_ON_READ',\n" +
" 'path' = 'hdfs://ip:8020/hudi/hudi_users2'\n " +
")";
String transformSQL = "INSERT INTO hudi_users2 SELECT *, DATE_FORMAT(birthday, 'yyyyMMdd') FROM mysql_users\n";
tableEnvironment.executeSql(sourceDDL);
tableEnvironment.executeSql(sinkDDL);
tableEnvironment.executeSql(transformSQL);
environment.execute("mysql-to-hudi");
本地启动Flink程序
然后进行MySQL DML 操作
insertinto users (name) values ('hello');
insertinto users (name) values ('world');
insertinto users (name) values ('iceberg');
insertinto users (name) values ('hudi');
update users set name = 'hello spark' where id = 4;
delete from users where id = 5;
查看HDFS上hudi数据路径:
Hudi 默认情况下,MERGE_ON_READ表的压缩是启用的, 触发器策略是在完成五次提交后执行压缩. 在MySQL执行insert、update、delete等操作后,就可以用hive/spark-sql/presto进行查询。
如果没有生成parquet文件,我们建的parquet表是查询不出数据的。
五次提交后可以看到数据文件:
关掉Flink CDC程序, 单独写个FlinkSQL程序读取HDFS 上hudi数据:
public static void main(String[] args) throwsException {
final EnvironmentSettings fsSettings =EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build();
final StreamExecutionEnvironmentenvironment = StreamExecutionEnvironment.getExecutionEnvironment();
environment.setParallelism(1);
final StreamTableEnvironmenttableEnvironment = StreamTableEnvironment.create(environment, fsSettings);
tableEnvironment.getConfig().setSqlDialect(SqlDialect.DEFAULT);
String sourceDDL = "CREATE TABLEhudi_users2\n" +
"(\n" +
" id BIGINT PRIMARY KEY NOT ENFORCED,\n"+
" name STRING,\n" +
" birthday TIMESTAMP(3),\n" +
" ts TIMESTAMP(3),\n" +
" `partition` VARCHAR(20)\n" +
") PARTITIONED BY(`partition`) WITH (\n" +
" 'connector' = 'hudi',\n" +
" 'table.type' = 'MERGE_ON_READ',\n" +
" 'path' ='hdfs://ip:8020/hudi/hudi_users2',\n" +
" 'read.streaming.enabled' = 'true',\n"+
" 'read.streaming.check-interval' = '1'\n" +
")";
tableEnvironment.executeSql(sourceDDL);
TableResult result2 =tableEnvironment.executeSql("select * from hudi_users2");
result2.print();
environment.execute("read_hudi");
}
FlinkSQL读取到打印的数据:
与MySQL 数据库表数据比对可以看到数据是一致的:
至此flink + hudi 湖仓一体化方案的原型就构建完成了.
总结
本篇主要讲解Flink CDC与hudi整合实践, 探索新的湖仓一体架构, 业内37手游的湖仓一体架构也可供参考如下:
对频繁增加表字段的痛点需求,同步下游系统的时候希望能够自动加入这个字段,目前还没有完美的解决方案,Flink CDC社区后续看是否提供 Schema Evolution 的支持.
目前MySQL新增字段,是需要修改Flink程序,然后重启.
参考:
- https://hudi.apache.org/cn/
- https://cloud.tencent.com/developer/article/1884134
- https://developer.aliyun.com/article/791526