【10】利用泰勒公式推算一类数列极限


问题:\(\displaystyle f\left( 0 \right) =0\)\(\displaystyle f''\left( 0 \right)\)存在,常数\(\displaystyle m>0\),求证:

\[\lim_{n\rightarrow \infty} \sum_{i=1}^n{f\left( \frac{i^m}{n^{m+1}} \right)}=\frac{1}{m+1}f'\left( 0 \right) \]


过程如下:根据带\(\text{Peano}\)余项的\(\text{Taylor}\)公式,我们有

\[\begin{align*} f\left( x \right) &=f\left( 0 \right) +f'\left( 0 \right) x+\frac{f''\left( 0 \right)}{2!}x^2+o\left( x^2 \right) \\ &=f'\left( 0 \right) x+\frac{f''\left( 0 \right)}{2}x^2+o\left( x^2 \right) \end{align*} \]

因此

\[\begin{align*} f\left( \frac{i^m}{n^{m+1}} \right) &=f'\left( 0 \right) \cdot \frac{i^m}{n^{m+1}}+\frac{f''\left( 0 \right)}{2}\cdot \left( \frac{i^m}{n^{m+1}} \right) ^2+o\left( \left( \frac{i^m}{n^{m+1}} \right) ^2 \right) \\ &=f'\left( 0 \right) \cdot \frac{i^m}{n^{m+1}}+\frac{f''\left( 0 \right)}{2}\cdot \frac{i^{2m}}{n^{2m+2}}+o\left( \frac{1}{n^2} \right) \end{align*} \]

所以有

\[\lim_{n\rightarrow \infty} \sum_{i=1}^n{f\left( \frac{i^m}{n^{m+1}} \right)}=\lim_{n\rightarrow \infty} \sum_{i=1}^n{\left[ f'\left( 0 \right) \cdot \frac{i^m}{n^{m+1}}+\frac{f''\left( 0 \right)}{2}\cdot \frac{i^{2m}}{n^{2m+2}}+o\left( \frac{1}{n^2} \right) \right]} \]

由于

\[\begin{equation*} \lim_{n\rightarrow \infty} \sum_{i=1}^n{f'\left( 0 \right) \cdot \frac{i^m}{n^{m+1}}}=f'\left( 0 \right) \lim_{n\rightarrow \infty} \frac{1}{n}\sum_{i=1}^n{\left( \frac{i}{n} \right) ^m}=f'\left( 0 \right) \cdot \int_0^1{x^m\text{d}x}=\frac{1}{m+1}f'\left( 0 \right) \\ \lim_{n\rightarrow \infty} \sum_{i=1}^n{\frac{f''\left( 0 \right)}{2}\cdot \frac{i^{2m}}{n^{2m+2}}}=\frac{f''\left( 0 \right)}{2}\lim_{n\rightarrow \infty} \frac{1}{n}\cdot \frac{1}{n}\sum_{i=1}^n{\left( \frac{i}{n} \right) ^{2m}}=\frac{f''\left( 0 \right)}{2}\lim_{n\rightarrow \infty} \frac{1}{n}\int_0^1{x^{2m}\text{d}x}=0 \\ \lim_{n\rightarrow \infty} \sum_{i=1}^n{o\left( \frac{1}{n^2} \right)}=\lim_{n\rightarrow \infty} n\cdot o\left( \frac{1}{n^2} \right) =0 \end{equation*} \]

因此

\[\lim_{n\rightarrow \infty} \sum_{i=1}^n{f\left( \frac{i^m}{n^{m+1}} \right)}=\frac{1}{m+1}f'\left( 0 \right) +0+0=\frac{1}{m+1}f'\left( 0 \right) \]

故原命题成立。

借助此结论或方法,我们可以计算以下极限:

\[\lim_{n\rightarrow \infty} \sum_{k=1}^n{\left( \sqrt{1+\frac{k}{n^2}}-1 \right)} \\ \lim_{n\rightarrow \infty} \sum_{k=1}^n{\sin \frac{k^2}{n^3}}\]

这提醒我们,在计算一些求和形式但不好使用定积分定义的数列极限,可以尝试使用\(\text{Taylor}\)公式进行计算。