phoenix与spark整合
目的是将phoenix做存储,spark做计算层。这样就结合了phoenix查询速度快和spark计算速度快的优点。
在这里将Phoenix的表作为spark的RDD或者DataFrames来操作,并且将操作的结果写回phoenix中。
这样做也扩大了两者的使用场景。
Phoenix 版本 4.4.0
Hbase版本 0.98
spark版本 spark-1.5.2-bin-hadoop2.6
首先配置 SPARK_CLASSPATH
要想在spark中操作phoenix,就必须让spark可以找到phoenix的相关类,所以我们把client放到spark_classpath中
export SPARK_CLASSPATH=$SPARK_CLASSPATH:/home/hadoop/phoenix/phoenix-spark-4.4.0-HBase-0.98-tests.jar export SPARK_CLASSPATH=$SPARK_CLASSPATH:/home/hadoop/phoenix/phoenix-4.4.0-HBase-0.98-client.jar export SPARK_CLASSPATH=$SPARK_CLASSPATH:/home/hadoop/phoenix/phoenix-server-client-4.4.0-HBase-0.98.jar
这样就可以在spark-shell中操作phoenix了
下来结合两者做下实验:
1> 在phoenix中创建几张表
[hadoop@10.10.113.45 ~/phoenix/bin]$>./sqlline.py 10.10.113.45:2181 0: jdbc:phoenix:10.10.113.45:2181> CREATE TABLE EMAIL_ENRON( . . . . . . . . . . . . . . . . .> MAIL_FROM BIGINT NOT NULL, . . . . . . . . . . . . . . . . .> MAIL_TO BIGINT NOT NULL . . . . . . . . . . . . . . . . .> CONSTRAINT pk PRIMARY KEY(MAIL_FROM, MAIL_TO)); 0: jdbc:phoenix:10.10.113.45:2181> CREATE TABLE EMAIL_ENRON_PAGERANK( . . . . . . . . . . . . . . . . .> ID BIGINT NOT NULL, . . . . . . . . . . . . . . . . .> RANK DOUBLE . . . . . . . . . . . . . . . . .> CONSTRAINT pk PRIMARY KEY(ID)); No rows affected (0.52 seconds)
查看下是否创建成功
0: jdbc:phoenix:10.10.113.45:2181> !tables +------------------------------------------+------------------------------------------+------------------------------------------+--------------+ | TABLE_CAT | TABLE_SCHEM | TABLE_NAME | | +------------------------------------------+------------------------------------------+------------------------------------------+--------------+ | | SYSTEM | CATALOG | SYSTEM TABLE | | | SYSTEM | FUNCTION | SYSTEM TABLE | | | SYSTEM | SEQUENCE | SYSTEM TABLE | | | SYSTEM | STATS | SYSTEM TABLE | | | | EMAIL_ENRON | TABLE | | | | EMAIL_ENRON_PAGERANK | TABLE | +------------------------------------------+------------------------------------------+------------------------------------------+--------------+ 0: jdbc:phoenix:10.10.113.45:2181>
2> 在将数据load到phoenix中,数据有40万行
[hadoop@10.10.113.45 ~/phoenix/bin]$>./psql.py -t EMAIL_ENRON 10.10.113.45:2181 /home/hadoop/sfs/enron.csv SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder". SLF4J: Defaulting to no-operation (NOP) logger implementation SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details. 15/12/03 10:06:37 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable csv columns from database. CSV Upsert complete. 367662 rows upserted Time: 21.783 sec(s)
数据来源:https://snap.stanford.edu/data/email-Enron.html
然后在查询下
0: jdbc:phoenix:10.10.113.45:2181> select count(*) from EMAIL_ENRON; +------------------------------------------+ | COUNT(1) | +------------------------------------------+ | 367662 | +------------------------------------------+ 1 row selected (0.289 seconds)
看37万数据,查询不到一秒!!!
下面进入到spark-shell 的交互模式,我们做一个PageRank 算法的例子
[hadoop@10.10.113.45 ~/spark/bin]$>./spark-shell scala> import org.apache.spark.graphx._ import org.apache.spark.graphx._ scala> import org.apache.phoenix.spark._ import org.apache.phoenix.spark._ scala> val rdd = sc.phoenixTableAsRDD("EMAIL_ENRON", Seq("MAIL_FROM", "MAIL_TO"), zkUrl=Some("10.10.113.45")) rdd: org.apache.spark.rdd.RDD[Map[String,AnyRef]] = MapPartitionsRDD[2] at map at SparkContextFunctions.scala:39 scala> val rawEdges = rdd.map{ e => (e("MAIL_FROM").asInstanceOf[VertexId], e("MAIL_TO").asInstanceOf[VertexId]) } rawEdges: org.apache.spark.rdd.RDD[(org.apache.spark.graphx.VertexId, org.apache.spark.graphx.VertexId)] = MapPartitionsRDD[3] at map at:29 scala> val graph = Graph.fromEdgeTuples(rawEdges, 1.0) graph: org.apache.spark.graphx.Graph[Double,Int] = org.apache.spark.graphx.impl.GraphImpl@621bb3c3 scala> val pr = graph.pageRank(0.001) pr: org.apache.spark.graphx.Graph[Double,Double] = org.apache.spark.graphx.impl.GraphImpl@55e444b1 scala> pr.vertices.saveToPhoenix("EMAIL_ENRON_PAGERANK", Seq("ID", "RANK"), zkUrl = Some("10.10.113.45"))(这一步会很耗内存,可能有的同学在测试的时候会报OOM,建议增大spark中executor memory,driver memory的大小)
我们在去phoenix中查看一下结果。
0: jdbc:phoenix:10.10.113.45:2181> select count(*) from EMAIL_ENRON_PAGERANK; +------------------------------------------+ | COUNT(1) | +------------------------------------------+ | 29000 | +------------------------------------------+ 1 row selected (0.113 seconds) 0: jdbc:phoenix:10.10.113.45:2181> SELECT * FROM EMAIL_ENRON_PAGERANK ORDER BY RANK DESC LIMIT 5; +------------------------------------------+------------------------------------------+ | ID | RANK | +------------------------------------------+------------------------------------------+ | 273 | 117.18141799210386 | | 140 | 108.63091596789913 | | 458 | 107.2728800448782 | | 588 | 106.11840798585399 | | 566 | 105.13932886531066 | +------------------------------------------+------------------------------------------+ 5 rows selected (0.568 seconds)