Codeforces 161D Distance in Tree(树的点分治)
A tree is a connected graph that doesn't contain any cycles.
The distance between two vertices of a tree is the length (in edges) of the shortest path between these vertices.
You are given a tree with n vertices and a positive number k. Find the number of distinct pairs of the vertices which have a distance of exactly k between them. Note that pairs (v, u) and (u, v) are considered to be the same pair.
Input
The first line contains two integers n and k (1?≤?n?≤?50000, 1?≤?k?≤?500) — the number of vertices and the required distance between the vertices.
Next n?-?1 lines describe the edges as "ai bi" (without the quotes) (1?≤?ai,?bi?≤?n, ai?≠?bi), where ai and bi are the vertices connected by the i-th edge. All given edges are different.
Output
Print a single integer — the number of distinct pairs of the tree's vertices which have a distance of exactly k between them.
Please do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier.
Examples
Input
5 2
1 2
2 3
3 4
2 5
Output
4
Input
5 3
1 2
2 3
3 4
4 5
Output
2
Note
In the first sample the pairs of vertexes at distance 2 from each other are (1, 3), (1, 5), (3, 5) and (2, 4).
#include#include return 0; }#include #include using namespace std; #define N 50010 #define inf 1e9+10 struct node{int to,c,next;}g[N*2]; int head[N],m; int son[N],f[N]; bool vis[N]; int d[N],deep[N]; int n,sum,root,k,ans; void add_edge(int from,int to,int cost) { g[++m].next = head[from]; head[from] = m; g[m].to = to; g[m].c = cost; } void getroot(int v,int fa) { son[v] = 1; f[v] = 0; for(int i = head[v];i;i=g[i].next) if(g[i].to != fa && !vis[g[i].to]) { getroot(g[i].to,v); son[v] += son[g[i].to]; f[v] = max(f[v],son[g[i].to]); } f[v] = max(f[v],sum - son[v]); if(f[v] < f[root]) root = v; } void getdeep(int v,int fa) { deep[++deep[0]] = d[v]; for(int i = head[v];i;i=g[i].next) if(g[i].to != fa && !vis[g[i].to]) { d[g[i].to] = d[v] + g[i].c; getdeep(g[i].to,v); } } int cal(int v,int cost) { d[v] = cost; deep[0] = 0; getdeep(v,0); sort(deep+1,deep+deep[0]+1); int l = 1,r = deep[0],res = 0; for(int l = 1;l < r;l++) for(int j=l+1;j<=r;j++){ if(deep[l]+deep[j]==k) res++; else if(deep[l]+deep[j]>k) break; } return res; } void solve(int v) { ans += cal(v,0); vis[v] = 1; for(int i = head[v];i;i=g[i].next) if(!vis[g[i].to]) { ans -= cal(g[i].to,g[i].c); sum = son[g[i].to]; root = 0; getroot(g[i].to,0); solve(root); } } int main() { int u,v,w; scanf("%d%d",&n,&k); ans = root = m = 0; memset(vis,0,sizeof(vis)); memset(head,0,sizeof(head)); for(int i = 1;i < n;i++) { scanf("%d%d",&u,&v); add_edge(u,v,1); add_edge(v,u,1); } f[0] = inf; sum = n; getroot(1,0); solve(root); cout< endl;