[ 机器学习 - 吴恩达 ] 单变量线性回归 | 2-4 梯度下降
函数:\(J(\theta_0,\theta_1)\)
目标:\(\begin{matrix}
min\\
\theta_0,\theta_1
\end{matrix}\)** \(J(\theta_0,\theta_1)\)
大纲:
- 从某一\(\theta_0, \theta_1\)开始
- 不断改变\(\theta_0, \theta_1\),以减少\(J(\theta_0,\theta_1)\),直到其达到最小值。
梯度下降算法
repeat until convergence {
\(\theta_j := \theta_j - \alpha\frac{\partial}{\partial \theta_j}J(\theta_0,\theta_1)\)??\((for\ j = 0\ and\ j = 1\))
}
正确:同步更新
tmp0 \(:= \theta_0 - \alpha\frac{\partial}{\partial \theta_0}J(\theta_0,\theta_1)\)
tmp1 \(:= \theta_1 - \alpha\frac{\partial}{\partial \theta_1}J(\theta_0,\theta_1)\)
\(\theta_0 :=\) temp0
\(\theta_1 :=\) temp1
不正确:
tmp0 \(:= \theta_0 - \alpha\frac{\partial}{\partial \theta_0}J(\theta_0,\theta_1)\)
\(\theta_0 :=\) temp0
tmp1 \(:= \theta_1 - \alpha\frac{\partial}{\partial \theta_1}J(\theta_0,\theta_1)\)
\(\theta_1 :=\) temp1