Marginal effect
Odd ratio 和relative risk缺点是不太直观,而且容易误解。
1. 例子
Trt组:The probability of death in the treatment group is 0.20
Placebo组:probability of death in a control group is 0.40.
是说治疗组死亡比值减少37.5%,而不是治疗组死亡概率减少37.5%。或者说Placebo组的死亡比值 高于治疗组2.67倍。注意:odd ratio这的%是值,而不是概率。和概率啥关系都没有。
相对风险是 0.2 / 0.4 = 50%. 治疗组死亡概率降低50%;注意:relative这的%是概率。
死亡风险降低一半,听起来效果极强,但如果把数据换成 0.0002 和 0.0004会得出相同的结论,这缺点就是反应不出强度。
2. Marginal effect
marginal effects is a way of presenting results as differences in probabilities
用概率差异表示结果。
就是说用概率建模,而不是odd的对数。逻辑回归里面的系数就是odd的对数。
第一张图是说每多吸一单位的烟,低体重新生儿的odd增加4.59%;
第二张图是说每多吸一单位的烟,低体重新生儿的概率增加0.77%。吸10包烟就是增加百分之7.7%。
3.
data test; do a = 1 to 3 by 1; do y = 0,1; input freq @@; output; end; end; datalines; 6 12 35 23 11 13 ; ods html; proc logistic data=test; class a / param=glm; model y(event="1") = a / ; lsmeans a / e ilink diff cl; /*lsmestimate a [1,1] [-1,2] / cl;*/ store LogFit; weight freq; ods output coef=Coeffs; run; proc genmod data=test descending; class a; model y = a / dist=binomial link=identity; weight freq; lsmeans a / diff cl; run; proc catmod data=test; response 0 1; model y = a / param=ref clparm; weight freq; contrast "Prob Diff A1-A2" a 1 -1 / estimate=parm; contrast "Prob Diff A1-A3" a 1 0 / estimate=parm; contrast "Prob Diff A2-A3" a 0 1 / estimate=parm; run; quit;
来自 Interpreting Model Estimates: Marginal Effects (ucdenver.edu)
37228 - Estimating differences in probabilities (marginal effects) with confidence interval (sas.com)