CF1601E Phys Ed Online
考虑一个贪心。
我们一定采取的方案是
\(b_i = \min_{j = i - k}^i a_j\)
\(\sum a_l + b_{l + k} + \min_{i = 1}^2{b_{l + ik}} + \min_{i = 1}^3{b_{l + ik}}......\min_{i = 1}^t{b_{l + ik}}\)
那么我们看出来可以只考虑同余系的关键点即可。
但是我们发现我们不好计算答案。
一个想要的考虑是扫描线。
但是我们发现这样需要支持区间加,区间取 \(0\),区间加等差数列,单点查。
然后我发现我不会区间加等差数列,所以只能考虑正解做法。
考虑我们差分答案,记\(f_i\)为一直到结尾的答案,考虑倒序枚举\(i\),直接单调栈,其转移显然。
那么\([l,r]\)答案应为\(f_i - f_p + b_p * {(r - p + 1)} + a_l\)
\(p\)为\([l,r]\)中最小值位置。
考虑笛卡尔树上的\([l,r]\)的最小值位置即其两点\(LCA\)位置。
那么复杂度为\(O(nlog{\frac{n}{k}} + q)\)
较正解做法\(O(nlog + q)\) 效率应该差距不大。
所以这里采用正解做法即ST表。
#include
#define ll long long
#define N 600005
#define int ll
int n,q,k;
std::pair g[N][30];//ST表
int lg[N],b[N];
std::pair get(int l,int r){
if(l > r)
return std::pair(0,0);
int p = lg[r - l + 1];
return std::min(g[l][p],g[r - (1ll << p) + 1][p]);
}
int stk[N],top,nxt[N],f[N];
ll calc(int l,int r){
int p = get(l - k,r).second;
int tmp = g[p][0].first;
if(p == l - k)
p += k;
p = p + (r - p) % k;
return f[l] - f[p] + (r / k - p / k + 1) * b[p];
}
signed main(){
scanf("%d%d%d",&n,&q,&k);
lg[0] = -1;
for(int i = 1;i <= n;++i)
lg[i] = lg[i / 2] + 1;
for(int i = 1;i <= n;++i){
scanf("%d",&g[i][0].first);
g[i][0].second = i;
}
for(int j = 1;j <= 20;++j)
for(int i = 1;i + (1ll << j) - 1 <= n;++i)
g[i][j] = std::min(g[i][j - 1],g[i + (1ll << (j - 1))][j - 1]);
for(int i = k + 1;i <= n;++i)
b[i] = get(i - k,i).first;
for(int l = k + 1;l + k <= n && l <= 2 * k;++l){
int r = l + (n - l) / k * k;
top = 1;
for(int i = r;i >= l;i -= k){
while(top > 1 && b[i] <= b[stk[top]])
top -- ;
nxt[i] = stk[top];
f[i] = f[nxt[i]] + b[i] * (nxt[i] / k - i / k);
stk[++top] = i;
}
}
while(q -- ){
int l,r;
scanf("%d%d",&l,&r);
r = l + (r - l) / k * k;
std::cout<<(1ll * g[l][0].first + 1ll * (l + k <= r? calc(l + k,r) : 0))<