Android之Gradle
Android Studio入门
使用Android Studio新建一个工程之后,其目录结构是这样的:
├── app #Android App目录
│ ├── app.iml
│ ├── build #构建输出目录
│ ├── build.gradle #构建脚本
│ ├── libs #so相关库
│ ├── proguard-rules.pro #proguard混淆配置
│ └── src #源代码,资源等
├── build
│ └── intermediates
├── build.gradle #工程构建文件
├── gradle
│ └── wrapper
├── gradle.properties #gradle的配置
├── gradlew #gradle wrapper linux shell脚本
├── gradlew.bat
├── LibSqlite.iml
├── local.properties #配置Androod SDK位置文件
└── settings.gradle #工程配置
settings.gradle用于配置project,标明其下有几个module,比如这里包含一个:app module
include ':app'
和settings.gradle在同一目录下的build.gradle是一个顶级的build配置文件,在这里可以为所有project以及module配置一些常用的配置。
// Top-level build file where you can add configuration options common to all sub-projects/modules.
buildscript {
repositories {
jcenter()//使用jcenter库
}
dependencies {
// 依赖android提供的1.1.0的gradle build
classpath 'com.android.tools.build:gradle:1.1.0'
// NOTE: Do not place your application dependencies here; they belong
// in the individual module build.gradle files
}
}
//为所有的工程的repositories配置为jcenters
allprojects {
repositories {
jcenter()
}
}
Android Gradle基本配置
下面着重说一下Android的Gradle,毕竟对Android开发来说,这才是重中之重。这里以初始化好的build.gradle为例。
apply plugin: 'com.android.application'
android {
compileSdkVersion 21
buildToolsVersion "22.0.1"
defaultConfig {
applicationId "org.flysnow.demo"
minSdkVersion 9
targetSdkVersion 21
versionCode 1
versionName "1.0"
}
buildTypes {
release {
minifyEnabled false
proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.pro'
}
}
flavorDimensions "version"
//配置多渠道 可以在main同一级新建文件夹,文件夹的地址是你的包名的,包名.datasource;
productFlavors {
base {
dimension "version"
}
demo {
dimension "version"
applicationIdSuffix ".demo"
versionNameSuffix "-demo"
}
full {
dimension "version"
applicationIdSuffix ".full"
versionNameSuffix "-full"
}
}
}
dependencies {
compile fileTree(dir: 'libs', include: ['*.jar'])
compile 'com.android.support:appcompat-v7:22.0.0'
}
开头第一行apply plugin: ‘com.android.application’,这表示该module是一个app module,应用了com.android.application插件,如果是一个android library,那么这里的是apply plugin: ‘com.android.library’。
其次是基于哪个SDK编译,这里是API LEVEL,是21,buildToolsVersion是基于哪个构建工具版本进行构建的。defaultConfig是默认配置,如果没有其他的配置覆盖,就会使用这里的。看其属性的名字就可以知道其作用,比如applicationId是配置包名的,versionCode是版本号,versionName是版本名称等。
buildTypes是构建类型,常用的有release和debug两种,可以在这里面启用混淆,启用zipAlign以及配置签名信息等。
dependencies就不属于Android专有的配置了,它定义了该module需要依赖的jar,aar,jcenter库信息。
配置应用的签名信息
在android.signingConfigs{}下定义一个或者多个签名信息,然后在buildTypes{}配置使用即可。比如这里
android {
signingConfigs {
release {
storeFile file("release.keystore")
keyAlias "release"
keyPassword "123456"
storePassword "123456"
}
debug {
...
}
}
buildTypes {
release {
signingConfig signingConfigs.release
}
debug {
signingConfig signingConfigs.debug
}
}
}
storeFile是签名证书文件,keyAlias是别名,keyPassword是key的密码,storePassword是证书的密码。配好好相关信息即可在buildTypes配置使用。
启用proguard混淆
我们可以为不同的buildTypes选择是否启用混淆,一般release发布版本是需要启用混淆的,这样别人反编译之后就很难分析你的代码,而我们自己开发调试的时候是不需要混淆的,所以debug不启用混淆。对release启用混淆的配置如下:
android {
buildTypes {
release {
minifyEnabled true
proguardFile 'proguard.cfg'
}
}
}
minifyEnabled为true表示启用混淆,proguardFile是混淆使用的配置文件,这里是module根目录下的proguard.cfg文件
启用zipAlign
这个也是比较简单的,同样也是在buildTypes里配置,可以为不用的buildTypes选择时候开启zipAlign
android {
buildTypes {
release {
zipAlignEnabled true
}
}
}
多渠道打包
东西到了国内就变了,做什么都是一窝蜂,比如Android App市场就是,所以才有了多渠道打包,每次发版几十个渠道包。还好Android Gradle给我们提供了productFlavors,让我们可以对生成的APK包进行定制,所以就有了多渠道。
android {
productFlavors {
dev{
}
google{
}
baidu{
}
}
}
这样当我们运行assembleRelease的时候就会生成3个release包,分别是dev、google以及baidu的。目前看这三个包除了文件名没有什么不一样,因为我们还没有定制,使用的都是defaultConfig配置。这里的flavor和defaultConfig是一样的,可以自定义其applicationId、versionCode以及versionName等信息,比如区分不同包名:
android {
productFlavors {
dev{
applicationId "org.flysnow.demo.dev"
}
google{
applicationId "org.flysnow.demo.google"
}
baidu{
applicationId "org.flysnow.demo.baidu"
}
}
}
批量修改生成的apk文件名
在我们打包发版的时候,一次性打几十个包,这时候我们就想让生成的apk文件名有区分,比如一眼就能看出这个apk是哪个版本的,哪个渠道的,是哪天打的包等等,这就需要我们在生成apk文件的时候动态修改生成的apk文件名达到这一目的。这里以我们的产品随手记为例:
def buildTime() {
def date = new Date()
def formattedDate = date.format('yyyyMMdd')
return formattedDate
}
android {
buildTypes {
release {
applicationVariants.all { variant ->
variant.outputs.each { output ->
if (output.outputFile != null && output.outputFile.name.endsWith('.apk')
&&'release'.equals(variant.buildType.name)) {
def apkFile = new File(
output.outputFile.getParent(),
"Mymoney_${variant.flavorName}_v${variant.versionName}_${buildTime()}.apk")
output.outputFile = apkFile
}
}
}
}
}
}
以baidu渠道为例,以上的代码会生成一个名字为Mymoney_baidu_v9.5.2.6_20150330.apk安装包。下面我们分析一下,Android Gradle任务比较复杂,它的很多任务都是自动生成的,为了可以更灵活的控制,Android Gradle提供了applicationVariants、libraryVariants以及testVariants,他们分别适用于app、library、app和library都适用。
这里是循环处理每个applicationVariant,当他们的输出文件名以apk结尾并且buildType是release时,重新设置新的输出文件名,这样就达到了我们批量修改生成的文件名的目的。
AndroidManifest里的占位符
AndroidManifest.xml这是一个很重要的文件,我们的很多配置都在这里定义。有时候我们的一些配置信息,比如一个第三方应用的key,第三方统计分析的渠道号等也要在这里进行配置。这里以友盟统计分析平台为例,演示这一功能的使用。在友盟统计分析中,我们需要根据渠道进行统计,比如google,百度,应用宝等渠道的活跃新增等,友盟的SDK是在AndroidManifest里配置一个name为UMENG_CHANNEL的meta-data,这样这个meta-data的值就表示这个apk是哪个渠道,我们版本发布有几十个渠道,以前ant打包的时候是采用文字替换的办法,现在Gradle有更好的处理办法,那就是manifestPlaceholders,它允许我们动态替换我们在AndroidManifest文件里定义的占位符。
如上${UMENG_CHANNEL_VALUE}就是一个占位符,然后我们在gradle的defaultConfig;里这样定义脚本:
android {
defaultConfig {
manifestPlaceholders = [UMENG_CHANNEL_VALUE: 'dev']
}
}
以前的意思就是我们的默认配置里AndroidManifest的${UMENG_CHANNEL_VALUE}占位符会被dev这个字符串所替换,也就说默认运行的版本是一个开发板。以此类推,我们其他渠道的版本就可以这样定义:
android {
productFlavors {
google{
applicationId "org.flysnow.demo.google"
manifestPlaceholders.put("UMENG_CHANNEL_VALUE",'google')
}
baidu{
applicationId "org.flysnow.demo.baidu"
manifestPlaceholders.put("UMENG_CHANNEL_VALUE",'baidu')
}
}
}
这样有多少个渠道就做多少次这样的定义,即可完成分渠道统计。但是如果上百个渠道,这样一个个写的确太累,很麻烦,我们继续研究,同学们有没有发现,我们的渠道名字和我们的flavorName一样,我们用这个flavorName作为UMENG_CHANNEL_VALUE不就好了吗,可以批量的替换吗?当然可以,这又体现了我们Gradle的强大和灵活之处。
productFlavors.all { flavor ->
manifestPlaceholders.put("UMENG_CHANNEL_VALUE",name)
}
循环每个flavor,并把他们的UMENG_CHANNEL_VALUE设置为他们自己的name名字,ok,搞定。
自定义你的BuildConfig
BuildConfig.java是Android Gradle自动生成的一个java类文件,无法手动编译,但是可以通过Gradle控制,也就是说他是动态可配置的,有了这个功能就很好玩了,这里以生产环境和测试环境为例来说明该功能的使用。
我们在开发App的时候免不了要和服务器进行通信,我们的服务器一般都有生产和测试环境,当我们处理开发和测试的时候使用测试环境进行调试,正式发布的时候使用生成环境。以前的时候我们通过把不同的配置文件打包进APK中来控制,现在不一样了,我们有更简便的方法,这就是buildConfigField。
android {
defaultConfig {
buildConfigField 'String','API_SERVER_URL','"http://test.flysnow.org/"'
}
productFlavors {
google{
buildConfigField 'String','API_SERVER_URL','"http://www.flysnow.org/"'
}
baidu{
buildConfigField 'String','API_SERVER_URL','"http://www.flysnow.org/"'
}
}
}
buildConfigField 一共有3个参数,第一个是数据类型,就是你定义的常量值是一个什么类型,和Java的类型是对等的,这里是String。第二个参数是常量名,这里是API_SERVER_URL。第三个参数是常量值。如此定义之后,就会在BuildConfig.java中生成一个常量名为API_SERVER_URL的常量定义。默认配置的生成是:
public final static String API_SERVER_URL = "http://test.flysnow.org/"
当是baidu和google渠道的时候生成的就是http://www.flysnow.org/了。这个常量可以在我们编码中引用。在我们进行打包的时候会根据Gradle配置动态替换。
我们发现一般渠道版本都是用来发布的,肯定用的是生产服务器,所以我们可以使用批处理来搞定这个事情,而不用在一个个渠道里写这些配置。
productFlavors.all { flavor ->
buildConfigField 'String','API_SERVER_URL','"http://www.flysnow.org/"'
}
此外,比如Gradle的resValue,也是和buildConfigField,只不过它控制生成的是资源,比如我们在android的values.xml定义生成的字符串。可以用它来动态生成我们想要的字符串,比如应用的名字,可能一些渠道会不一样,这样就可以很灵活的控制自动生成,关于resValue详细介绍请参考相关文档,这里不再举例说明。
插装测试覆盖率代码
代码覆盖率现在已经成为检验单元测试是否覆盖到的一种手段,Android Gradle提供了原生的用于单元测试的代码覆盖率,这个就是jacoco。今天我们不谈这个,我想要的是在我们生成的APK包中已经包含了检测代码覆盖率的代码,这样当我们安装APK后运行进行一些测试的时候,这些检测代码覆盖率的代码就会被执行到,这样最后我们导出一份代码测试覆盖率的文件,然后生成查看测试覆盖率报告看哪些覆盖到,哪些没有覆盖到。这种场景在检测测试工程师测试功能以及Android UI自动化测试是否完全覆盖尤为有效。这里代码覆盖率框架我选择的是emma,一来这个在Ant打包的时候一直在用,二来它具有很方便的插装功能。
emma插装的是class文件,所以我们只能在编译完java文件生成class文件后进行插装,这是我们进行覆盖率代码插装的最好时机。找到了时机,那么具体对应在Gradle脚本上是哪呢?还记不记得我们上面讲的applicationVariants,每一个applicationVariant都有一个javaCompile属性,javaCompile是一个JavaCompile类型的Task,这个就是负责编译java代码的。是Task就有doLast方法,就是在这个任务本身完成之后要做的事情,我们就是在这个方法里进行我们的代码覆盖率的安装。一般我们这个插装只是在特性情况下,那么我们新增一个特殊的flavor好了,专门做这个使用,这里我姑且叫feature。
applicationVariants.all { variant ->
//为feature 版本加上代码覆盖率
if('feature'.equals(variant.flavorName)){
variant.javaCompile.doLast {
def coverageFile=file('out/coverage.em')
if(coverageFile.exists()){
coverageFile.delete()
}
javaexec {
main 'emma'
args 'instr','-ip',variant.javaCompile.destinationDir,'-m','overwrite','-out','out/coverage.em'
classpath files(new File(getSdkDirectory(),'tools/lib/emma.jar'))
}
}
}
}
非常简单,我们使用javaexec命令执行java应用程序进程插装,插装模式使用的是overwrite,就是插装后覆盖源文件。getSdkDirectory()函数获取你电脑上的Android SDK目录,这里我们使用SDK自带的emma,保持每个人的统一。另外注意进行代码覆盖率插装的APK不能进行代码混淆,这个很简单,为feature flavor指定不混淆的proguardFile覆盖默认的proguardFile即可。最后该APK需要emma的框架代码,所以要配置feature flavor的特殊依赖信息。
dependencies {
compile fileTree(dir: 'libs', include: '*.jar')
featureCompile files(new File(android.getSdkDirectory(),'tools/lib/emma_device.jar'))
}
dexOptions javaMaxHeapSize
在Gradle 进行dex的可能会遇到内存不够用的情况,错误信息大概是java.lang.OutOfMemoryError: GC overhead limit exceeded。这个时候只需要配置dexOptions的javaMaxHeapSize大小即可,我这里配置4g:
dexOptions {
javaMaxHeapSize "4g"
}
版本依赖问题
对于一个项目依赖的库出现重复,一劳永逸的解决办法是在app/build.gradle中进行统一处理
configurations.all {
resolutionStrategy.eachDependency { DependencyResolveDetails details ->
def requested = details.requested
if (requested.group == 'com.android.support') {
if (requested.name.startsWith("multidex")) {
details.useVersion '1.0.3'
} else {
details.useVersion '28.0.0'
}
}
}
}
Gradle的dependencies
将公共module改为implementation后出现找不到com.trello.rxlifecycle2.components.support.RxAppCompatActivity的类文件
解决办好
module/build.gradle
dependencies{
//compile -> api
//不要更改为implementation,原因是公共模块被改为implementation后,主项目会出现找不到对应的Api的情况
}
api的作用等同于compile,implementation添加的依赖包值能用于自己的module,其余的module是不能够调用的
查看项目依赖关系
查看api的依赖树
gradle -q dependencies api:dependencies app[项目名]:dependencies
查看项目的依赖树
gradle -q dependencies app[项目名]:dependencies
//去掉依赖
implementation('x.y.z:version') {
//两种方式
exclude group:'io.reactivex.rxjava'
exclude module: 'rxjava'
}
查看指定模块的依赖树
./gradlew 模块名:dependencies