进程相互作用之信号量PV操作及其代码实现
目录
- 信号量PV操作
- 基本介绍
- 数据结构
- 解决进程互斥问题
- 解决进程同步问题
- 代码实现(以同步问题为例)
信号量PV操作
基本介绍
- 信号量(Semaphore):是表示资源的实体,是一个与队列有关的整型变量,其值仅能由P、V操作改变。
- 信号量分为:公用信号量和私用信号量。
- 公用信号量:用于实现进程间的互斥,初值通常设为1,它所联系的一组并发进程均可对它实施P、V操作;
- 私用信号量:用于实现进程间的同步,初始值通常设为0或n,允许拥有它的进程对其实施Р操作。
数据结构
信号量的数据结构:
struct semaphore{
int value; //系统中的资源数
pointer_PCB queue; //阻塞进程队列
};//PCB表示进程控制块
//声明
semaphore s;
PV操作
P(s){//申请资源
if(--s.value<0){
该进程设置为阻塞态
将该进程的PCB插入阻塞队列s.queue末尾
}
}
V(s){//释放资源
if(++s.value <= 0){
唤醒相应阻塞队列s.queue中等待的一个进程
改变其状态为就绪态
并将其插入就绪队列
}
}
s. value >= 0时,其值表示还有可用的资源数;
s. value < 0时,其绝对值表示有多少个进程因申请该信号量表示的资源,得不到而进入阻塞态;
解决进程互斥问题
把P1-P3进程的互斥操作都包括在一个PV操作对中
由P2进入
举例1:
启发:写并发进程的时候需要明确互斥区
- 不同进程未进入互斥区时可以并发
- 不同进程进入互斥区时要用PV操作控制
解决进程同步问题
在同步问题中信号量的value值相比于“资源”资源来说,理解为“权限”会更合适,在一个同步问题中,一个进程的执行权限是由它的前驱进程赋予的
代码实现(以同步问题为例)
为了便于实现,将程序的运行操作也封装到PV操作中,即
- 如果P操作为信号量申请到权限,那么直接执行信号量所对应的进程
- 如果V操作赋予了信号量权限且信号量的阻塞队列中有进程,那么直接执行阻塞队列中的进程
代码如下:【本人才疏学浅,如有不足恳请斧正】
#include
#include
#include
using namespace std;
/*定义类:process表示一个进程*/
class process{
public :
/*构造函数*/
process() = default;
process(const string &name) : process_name(name){}
process(const process &p) :
process_name(p.process_name){}
/*成员函数*/
//执行进程
void _on(){cout< blocked_processes; //阻塞队列
};
/*P操作:申请资源(权限)*/
void P(semaphore &s){
--s.value;//申请
if(s.value<0){//无资源(权限):进程进入阻塞队列
//打印提示信息
cout<=0){//如果阻塞队列有进程:唤醒阻塞进程
if(!s.blocked_processes.empty()){
s.blocked_processes.front()._on();
s.blocked_processes.pop();
}
}
//否则什么也不做
}
//开车进程
process speed_up("speed_up");
//开门进程
process open_door("open_door");
//用两个信号量分别控制开车进程和开门进程
semaphore OpenDoor(open_door), Speed_Up(speed_up);
int main(){
V(OpenDoor); //赋予开车门的权限
P(OpenDoor); //申请权限:有权限,可以开,打印open_door: on
P(OpenDoor); //申请权限:无权限,开不了门,进入开门阻塞队列
P(Speed_Up); //申请权限:无权限,开不了车,进入开车阻塞队列
V(Speed_Up); //赋予权限:执行开车阻塞队列进程,打印speed_up: on
V(OpenDoor); //赋予权限:执行开门阻塞队列进程,打印open_door: on
return 0;
}
运行结果: