LFU
460. LFU Cache
Hard
Design and implement a data structure for a Least Frequently Used (LFU) cache.
Implement the LFUCache class:
LFUCache(int capacity)Initializes the object with thecapacityof the data structure.int get(int key)Gets the value of thekeyif thekeyexists in the cache. Otherwise, returns-1.void put(int key, int value)Update the value of thekeyif present, or inserts thekeyif not already present. When the cache reaches itscapacity, it should invalidate and remove the least frequently used key before inserting a new item. For this problem, when there is a tie (i.e., two or more keys with the same frequency), the least recently usedkeywould be invalidated.
To determine the least frequently used key, a use counter is maintained for each key in the cache. The key with the smallest use counter is the least frequently used key.
When a key is first inserted into the cache, its use counter is set to 1 (due to the put operation). The use counter for a key in the cache is incremented either a get or put operation is called on it.
The functions get and put must each run in O(1) average time complexity.
Example 1:
Input
["LFUCache", "put", "put", "get", "put", "get", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [3], [4, 4], [1], [3], [4]]
Output
[null, null, null, 1, null, -1, 3, null, -1, 3, 4]
Explanation
// cnt(x) = the use counter for key x
// cache=[] will show the last used order for tiebreakers (leftmost element is most recent)
LFUCache lfu = new LFUCache(2);
lfu.put(1, 1); // cache=[1,_], cnt(1)=1
lfu.put(2, 2); // cache=[2,1], cnt(2)=1, cnt(1)=1
lfu.get(1); // return 1
// cache=[1,2], cnt(2)=1, cnt(1)=2
lfu.put(3, 3); // 2 is the LFU key because cnt(2)=1 is the smallest, invalidate 2.
// cache=[3,1], cnt(3)=1, cnt(1)=2
lfu.get(2); // return -1 (not found)
lfu.get(3); // return 3
// cache=[3,1], cnt(3)=2, cnt(1)=2
lfu.put(4, 4); // Both 1 and 3 have the same cnt, but 1 is LRU, invalidate 1.
// cache=[4,3], cnt(4)=1, cnt(3)=2
lfu.get(1); // return -1 (not found)
lfu.get(3); // return 3
// cache=[3,4], cnt(4)=1, cnt(3)=3
lfu.get(4); // return 4
// cache=[3,4], cnt(4)=2, cnt(3)=3
Constraints:
0 <= capacity <= 1040 <= key <= 1050 <= value <= 109- At most
2 * 105calls will be made togetandput.
class LFUCache { class Node{ int key; int val; int freq; int seq; Node(int key,int val,int seq){ this.key=key; this.val=val; this.seq=seq; this.freq=1; } } PriorityQueuepq; HashMap map; int currseq = 0; int cap=0; public LFUCache(int capacity) { this.cap = capacity; pq = new PriorityQueue ((x,y)->{ if( x.freq != y.freq ) return x.freq-y.freq; return x.seq-y.seq; }); map = new HashMap(); } public int get(int key) { if(cap==0) return -1; //0.get Node with key Node node = map.get(key); //1.if key exists if(node!=null){ //remove from pq pq.remove(node); //let freq++; node.freq++; node.seq=currseq++; //add to pq again pq.offer(node); //return val; return node.val; } //2.key not exists else return -1; } public void put(int key, int value) { if(cap==0) return; //0.get Node with key Node node = map.get(key); //1.if key exists if(node!=null){ //set the new value node.val=value; //remove from pq pq.remove(node); //let freq++; node.seq=currseq++; node.freq++; //add to pq again pq.offer(node); } //2.key not exists else{ //new Node node = new Node(key,value,currseq++); //if the map is full if(map.size()==cap){ Node temp = pq.poll(); map.remove(temp.key); } //put it into pq pq.offer(node); //put it into map map.put(key,node); } } }