机器学习中的优化 Optimization Chapter 1 Mathematics Background(数学基础)
1. Notation
||\(x\)||: Euclidean norm (\(l_2\) norm),
\[||x||^2 = x^Tx= \sum_{i=1}^dx_i^2 \]$ \mathbb{R_+} = { x\in \mathbb{R}: x\geq 0 } $
2. Cauchy-Schwarz inequality
Let \(u,v\in \mathbb{R^d}\), then
\[|u^Tv|\leq ||u||\cdot ||v|| \]3. Spectral Norm
Let \(A\) be a matrix, \(A\in \mathbb{R^{m\times d}}\), then
\[||A|| = \max_{||v||=1}||Av|| \]where \(v\in \mathbb{R^d}\). Besides,
\[||Av|| \leq ||A||\cdot ||v|| \]Furthermore, we have triangle inequality:
\[||A+B||\leq ||A||+||B|| \]4. Mean Value Theorem
\(\large{\text{Theorem}\ 1.3}\): Let \(a be real numbers, \(h:[a,b]\rightarrow \mathbb{R}\) be a continuous function which is differential on \((a,b)\). Then there exists \(c\in (a,b)\) such that:
\[h'(c) = \frac{h(b)-h(a)}{b-a} \]5. Differentiability
\(\large{\text{Definition}\ 1.5}\): \(f: dom(f)\rightarrow \mathbb{R^m}, dom(f)\rightarrow \mathbb{R^d}. f \text{ is called differentiable at } x \text{ in the interior of } dom(f) \text{ if there exists a matrix } A\in \mathbb{R^{m\times d}} \text{ and an error function }r:\mathbb{R^d} \rightarrow \mathbb{R^m}\text{ defined in some neighborhood of } 0\in \mathbb{R^d} \text{such that for all }y \text{ in some neighborhood of }x,\)
\[f(y) = f(x)+A(y-x)+r(y-x) \]where
\[\lim_{v\rightarrow 0} \frac{||r(v)||}{||v||}=0 \]Besides, \(Df(x)_{ij} = \frac{\partial f_i}{\partial x_j}(x)\)
6. Convex Set
\(\large{\text{Theorem}\ 1.9}\): \(f:dom(f)\rightarrow \mathbb{R^m} \text{ be differentiable}, X\in dom(f) \text{ a convex set}, B\in \mathbb{R_+}. \text{ If } X\in dom(f) \text{ is non-empty and open the following statements are equivalent:}\)
\[\begin{align} &(i)\large{||f(x)-f(y)||\leq B||x-y||}(\large{\bf{\text{B-Lipschitz}}}) \\ &(ii)\large{||Df(x)||} \leq B, \forall x\in X \end{align} \]7. Epigraph
\[\begin{equation} {\bf{epi}}(f)=\{(x,\alpha)\in \mathbb{R^{d+1}}:x\in dom(f), \alpha\geq f(x) \} \end{equation} \]\(\large{\text{Lemma}\ 1.11}\): \(f\text{ is a convex function if and only if } {\bf epi}(f) \text{ is a convex set}\)
\(\large{\text{Lemma}\ 1.15}\): $f\text{ is convex if and only if } dom(f) \text{ is convex and} $:
\[\begin{equation} f(y)\geq f(x)+\nabla f(x)^T(y-x) \end{equation} \]\(\text{holds for all }x,y\in dom(f)\).
\(\large{\bf{\text{Lemma}}\ 1.16}\): \(\text{Suppose that }dom(f) \text{ is open and } f\text{ is differentiable. Then } f\text{ is convex if and only if } dom(f) \text{ is convex and}\)
\[\begin{equation} \large{{(\nabla f(y)-\nabla f(x))^T(y-x)\geq 0}} \end{equation} \]\(\text{holds for all }x,y\in dom(f)\).
\(\bf{Proof}: \text{If }f \text{ is convex,from first-order convex property we have}:\)
\(\text{for all } x,y\in dom(f). \text{ After adding up these two inequalities, then we get:}\)
\[\nabla f(x)^T(y-x)+\nabla f(y)^T(x-y) = (\nabla f(y)-\nabla f(x))^T(x-y)\leq 0 \]8. Second-Order Characterization of Convexity
\(\large{\text{Lemma}\ 1.17}\): $f\text{ is convex if and only if } dom(f) \text{ is convex and} $:
\[\begin{equation} \large\nabla^2 f(x)\geq 0 \end{equation} \]\(\text{holds for all }x,y\in dom(f) \text{ Positive Semidefinite: } M\geq 0, x^TMx\geq 0 \text{ for all }x\neq 0\).
\(\large{\text{Lemma}\ 1.25}\): \(f:dom(f)\rightarrow \mathbb{R}\text{ be strictly convex. Then }f \text{ has just at most one global minimum.}\)
\(\large{\text{Lemma}\ 1.27}\): \(\text{Suppose }f:dom(f)\rightarrow \mathbb{R}\text{ is convex and differentiable.} X\in dom(f) \text{ be a convex set. Point } x^*\in X \text{ is a } {\bf minimizer} \text{ of } f \text{ if and only if}\)
\[\large\nabla f(x^*)^T(x-x^*)\geq 0, \forall x\in X \]9. log-sum-exp function
\({\bf \large Statement}: \text{log-sum-exp function is a convex function}\)
\(\bf Proof\): \(f(x) = \log(\sum_i e^{x_i})\)
\(\text{By Inequality}:\)
\[\begin{align} \sum_i x_iy_i\leq (\sum_i |x_i|^p)^{1/p}(\sum_i |y_i|^q)^{1/q} \end{align} \]\(\text{Where }1/p+1/q=1. \text{ Therefore,}\)
\[\begin{align} \log(\sum_i u_i^{\theta}v_{i}^{(1-\theta)}) &\leq \log[(\sum_i |u_i|^{\theta\cdot 1/\theta})^{\theta}(\sum_i |v_i|^{(1-\theta)\cdot(1/(1-\theta))})^{1-\theta}]\\ &= \theta\log(\sum_i u_i)+(1-\theta)\log(\sum_i v_i) \end{align} \]