Unity——卡通渲染实现
效果展示:
原模型:
一、简单分析
卡通渲染又叫非真实渲染(None-Physical Rendering-NPR),一般日漫里的卡通风格有几个特点:
1.人物有描边
2.有明显的阴影分界线,没有太平滑的过渡
以下就根据这两点来实现卡渲效果;
二、描边
1.法线外扩
实现描边方式多种,比如卷积区分边界;
这里使用更简单的两个Pass,一个只用纯色画背面,利用法线外扩顶点,根据深度的不同这个纯色的背面会被显示出来,同时又不会遮挡正面;
Pass
{
Tags {"LightMode"="ForwardBase"}
//裁剪正面,只画背面
Cull Front
CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#include "UnityCG.cginc"
half _OutlineWidth;
half4 _OutLineColor;
struct a2v
{
float4 vertex : POSITION;
float3 normal : NORMAL;
float2 uv : TEXCOORD0;
float4 vertColor : COLOR;
float4 tangent : TANGENT;
};
struct v2f
{
float4 vertColor : TEXCOORD0;
float4 pos : SV_POSITION;
};
v2f vert (a2v v)
{
v2f o;
UNITY_INITIALIZE_OUTPUT(v2f, o);
//顶点沿着法线方向外扩
o.pos = UnityObjectToClipPos(float4(v.vertex.xyz + v.normal * _OutlineWidth * 0.1 ,1));
o.vertColor = fixed4(v.vertColor.rgb,1.0);
return o;
}
half4 frag(v2f i) : SV_TARGET
{
return half4(_OutLineColor.rgb * i.vertColor.rgb, 0);
}
ENDCG
}
2.细节处理(坑)
摄像机远近边缘线粗细不同
由于世界坐标系下做外扩,摄像机里物体远近会影响法线外扩的多少;
解决方案,在NDC坐标系下法线外扩;
//顶点着色器替换以下代码
float4 pos = UnityObjectToClipPos(v.vertex);
//摄像机空间法线
float3 viewNormal = mul((float3x3)UNITY_MATRIX_IT_MV, v.normal.xyz);
//将法线变换到NDC空间,投影空间*W分量
float3 ndcNormal = normalize(TransformViewToProjection(viewNormal.xyz)) * pos.w;
//xy两方向外扩
pos.xy += 0.01 * _OutlineWidth * ndcNormal.xy * v.vertColor.a;
o.pos = pos;
上下和左右边缘线粗细不同
NDC空间是正方形,而视口宽高比是长方体,导致描边上下和左右的粗细不统一;
解放方案,根据屏幕宽高比缩放法线再外扩;
//将近裁剪面右上角位置的顶点变换到观察空间
//unity_CameraInvProjection摄像机矩阵逆矩阵,UNITY_NEAR_CLIP_VALUE近截面值,DX:0,OpenGL-1.0;_ProjectionParams.y摄像机近截面
float4 nearUpperRight = mul(unity_CameraInvProjection, float4(1, 1, UNITY_NEAR_CLIP_VALUE, _ProjectionParams.y));
//求得屏幕宽高比
float aspect = abs(nearUpperRight.y / nearUpperRight.x);
ndcNormal.x *= aspect;
顶点重合法线不连续
模型顶点重合时会出现多条法线,在不同的面上法线不同导致描边不连续;
解决方案,修改模型顶点数据,同顶点多条法线求平均值;
需要和美工协商修改模型数据,这里写了脚本临时修改模型数据;
public class PlugTangentTools
{
[MenuItem("Tools/模型平均法线写入切线数据")]
public static void WirteAverageNormalToTangentToos()
{
MeshFilter[] meshFilters = Selection.activeGameObject.GetComponentsInChildren();
foreach (var meshFilter in meshFilters)
{
Mesh mesh = meshFilter.sharedMesh;
WirteAverageNormalToTangent(mesh);
}
SkinnedMeshRenderer[] skinMeshRenders = Selection.activeGameObject.GetComponentsInChildren();
foreach (var skinMeshRender in skinMeshRenders)
{
Mesh mesh = skinMeshRender.sharedMesh;
WirteAverageNormalToTangent(mesh);
}
Debug.Log("重合顶点平均法线写入成功");
}
private static void WirteAverageNormalToTangent(Mesh mesh)
{
var averageNormalHash = new Dictionary();
for (var j = 0; j < mesh.vertexCount; j++)
{
if (!averageNormalHash.ContainsKey(mesh.vertices[j]))
{
averageNormalHash.Add(mesh.vertices[j], mesh.normals[j]);
}
else
{
averageNormalHash[mesh.vertices[j]] =
(averageNormalHash[mesh.vertices[j]] + mesh.normals[j]).normalized;
}
}
var averageNormals = new Vector3[mesh.vertexCount];
for (var j = 0; j < mesh.vertexCount; j++)
{
averageNormals[j] = averageNormalHash[mesh.vertices[j]];
}
var tangents = new Vector4[mesh.vertexCount];
for (var j = 0; j < mesh.vertexCount; j++)
{
tangents[j] = new Vector4(averageNormals[j].x, averageNormals[j].y, averageNormals[j].z, 0);
}
mesh.tangents = tangents;
}
}
细节处理前后对比:
ps:利用模型顶点的四个通道RGBA——对描边粗细显影相机距离缩放进行精细控制,需要美工配合;
三、着色
1.减少色阶
二分法
将有阴影和没阴影的地方做明显的区分;
half4 frag(v2f i) : SV_TARGET
{
half4 col = 1;
half4 mainTex = tex2D(_MainTex, i.uv);
half3 viewDir = normalize(_WorldSpaceCameraPos.xyz - i.worldPos.xyz);
half3 worldNormal = normalize(i.worldNormal);
half3 worldLightDir = normalize(_WorldSpaceLightPos0.xyz);
//半兰伯特光照模型
half halfLambert = dot(worldNormal, worldLightDir) * 0.5 + 0.5;
//_ShadowRange区分阴影范围,_ShadowSmooth控制分界线的柔和程度,求出ramp值(百分比)
half ramp = smoothstep(0, _ShadowSmooth, halfLambert - _ShadowRange);
//根据ramp值插值取样,将阴影和main颜色混合
half3 diffuse = lerp(_ShadowColor, _MainColor, ramp);
diffuse *= mainTex;
col.rgb = _LightColor0 * diffuse;
return col;
}
Ramp贴图
使用明显分界的色阶图来取样,使阴影有明显的分界线;
逻辑和二分一样,只是多加个几个色阶;
//_ShadowRange范围取样Ramp贴图
half ramp = tex2D(_RampTex, float2(saturate(halfLambert - _ShadowRange), 0.5)).r;
?
高光色阶
卡渲高光和阴影一样,和周围色块有明显的分界线;
half3 specular = 0;
half3 halfDir = normalize(worldLightDir + viewDir);
half NdotH = max(0, dot(worldNormal, halfDir));
//_SpecularGloss控制高光光泽度
half SpecularSize = pow(NdotH, _SpecularGloss);
//_SpecularRange高光范围,_SpecularMulti强度,在范围内显示高光有明显分界
if (SpecularSize >= 1 - _SpecularRange)
{
specular = _SpecularMulti * _SpecularColor;
}
ilmTexture贴图
《GUILTY GEAR Xrd》中使用的方法,又叫Threshold贴图;
贴图的R通道控制漫反射的阴影阈值,G通道控制高光强度,B通道控制高光范围;
需要和美工配合,没贴图就不测了;
总之万物皆可用贴图来传递信息,rgba代表什么意思可以自行做各种trick;
half4 frag (v2f i) : SV_Target
{
half4 col = 0;
half4 mainTex = tex2D (_MainTex, i.uv);
//取样ilmTexture
half4 ilmTex = tex2D (_IlmTex, i.uv);
half3 viewDir = normalize(_WorldSpaceCameraPos.xyz - i.worldPos.xyz);
half3 worldNormal = normalize(i.worldNormal);
half3 worldLightDir = normalize(_WorldSpaceLightPos0.xyz);
//漫反射+阴影
half3 diffuse = 0;
half halfLambert = dot(worldNormal, worldLightDir) * 0.5 + 0.5;
//g通道控制高光强度
half threshold = (halfLambert + ilmTex.r) * 0.5;
half ramp = saturate(_ShadowRange - threshold);
ramp = smoothstep(0, _ShadowSmooth, ramp);
diffuse = lerp(_MainColor, _ShadowColor, ramp);
diffuse *= mainTex.rgb;
half3 specular = 0;
half3 halfDir = normalize(worldLightDir + viewDir);
half NdotH = max(0, dot(worldNormal, halfDir));
half SpecularSize = pow(NdotH, _SpecularGloss);
//b通道控制高光遮罩
half specularMask = ilmTex.b;
if (SpecularSize >= 1 - specularMask * _SpecularRange)
{
//g控制高光强度
specular = _SpecularMulti * (ilmTex.g) * _SpecularColor;
}
col.rgb = (diffuse + specular) * _LightColor0.rgb;
return col;
}
【翻译】西川善司「实验做出的游戏图形」「GUILTY GEAR Xrd -SIGN-」中实现的「纯卡通动画的实时3D图形」的秘密,前篇(1)
【翻译】西川善司「实验做出的游戏图形」「GUILTY GEAR Xrd -SIGN-」中实现的「纯卡通动画的实时3D图形」的秘密,前篇(2)
【翻译】西川善司的「实验做出的游戏图形」「GUILTY GEAR Xrd -SIGN-」中实现的「纯卡通动画的实时3D图形」的秘密,后篇
2.边缘泛光
三渲二加点边缘泛光会增加立体感,让画质更真实;效果如下;
_RimMin、_RimMax控制边缘泛光范围;
smoothstep使过渡平缓;再乘以RimColor,alpha控制强度;
half f = 1.0 - saturate(dot(viewDir, worldNormal));
half rim = smoothstep(_RimMin, _RimMax, f);
rim = smoothstep(0, _RimSmooth, rim);
half3 rimColor = rim * _RimColor.rgb * _RimColor.a;
col.rgb = (diffuse + specular + rimColor) * _LightColor0.rgb;
3.mask遮罩图
用一张贴图来修正边缘泛光的效果;
边缘光的计算使用的是法线点乘视线。在物体的法线和视线垂直的时候,边缘光会很强。在球体上不会有问题,但是在一些有平面的物体,当平面和视线接近垂直的时候,会导致整个平面都有边缘光。这会让一些不该有边缘光的地方出现边缘光。
4.屏幕后效
post-processing官方组件中有bloom效果;
原理:提取图像中较亮区域,存储在纹理中,使用高斯模糊模拟光线扩散效果,将该纹理和原图像混合;过程比较复杂,后面写屏幕后期效果再分析吧;
完整Shader:
Shader "Unlit/CelRenderFull"
{
Properties
{
_MainTex ("MainTex", 2D) = "white" {}
_IlmTex ("IlmTex", 2D) = "white" {}
[Space(20)]
_MainColor("Main Color", Color) = (1,1,1)
_ShadowColor ("Shadow Color", Color) = (0.7, 0.7, 0.7)
_ShadowSmooth("Shadow Smooth", Range(0, 0.03)) = 0.002
_ShadowRange ("Shadow Range", Range(0, 1)) = 0.6
[Space(20)]
_SpecularColor("Specular Color", Color) = (1,1,1)
_SpecularRange ("Specular Range", Range(0, 1)) = 0.9
_SpecularMulti ("Specular Multi", Range(0, 1)) = 0.4
_SpecularGloss("Sprecular Gloss", Range(0.001, 8)) = 4
[Space(20)]
_OutlineWidth ("Outline Width", Range(0, 1)) = 0.24
_OutLineColor ("OutLine Color", Color) = (0.5,0.5,0.5,1)
[Space(20)]
_RimMin ("imMin",float) = 1.0
_RimMax ("RimMax",float) = 2.0
_RimSmooth("RimSmooth",Range(0.0,1))=0.5
_RimColor("RimColor",Color) = (1,1,1,1)
}
SubShader
{
Pass
{
Tags { "LightMode"="ForwardBase"}
CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#pragma multi_compile_fwdbase
#include "UnityCG.cginc"
#include "Lighting.cginc"
#include "AutoLight.cginc"
sampler2D _MainTex;
float4 _MainTex_ST;
sampler2D _IlmTex;
float4 _IlmTex_ST;
half3 _MainColor;
half3 _ShadowColor;
half _ShadowSmooth;
half _ShadowRange;
half3 _SpecularColor;
half _SpecularRange;
half _SpecularMulti;
half _SpecularGloss;
half _RimMin;
half _RimMax;
half _RimSmooth;
fixed4 _RimColor;
struct a2v
{
float4 vertex : POSITION;
float2 uv : TEXCOORD0;
float3 normal : NORMAL;
};
struct v2f
{
float4 pos : SV_POSITION;
float2 uv : TEXCOORD0;
float3 worldNormal : TEXCOORD1;
float3 worldPos : TEXCOORD2;
};
v2f vert (a2v v)
{
v2f o = (v2f)0;
o.pos = UnityObjectToClipPos(v.vertex);
o.uv = TRANSFORM_TEX(v.uv, _MainTex);
o.worldNormal = UnityObjectToWorldNormal(v.normal);
o.worldPos = mul(unity_ObjectToWorld, v.vertex).xyz;
return o;
}
half4 frag (v2f i) : SV_Target
{
half4 col = 0;
half4 mainTex = tex2D (_MainTex, i.uv);
half4 ilmTex = tex2D (_IlmTex, i.uv);
half3 viewDir = normalize(_WorldSpaceCameraPos.xyz - i.worldPos.xyz);
half3 worldNormal = normalize(i.worldNormal);
half3 worldLightDir = normalize(_WorldSpaceLightPos0.xyz);
half3 diffuse = 0;
half halfLambert = dot(worldNormal, worldLightDir) * 0.5 + 0.5;
half threshold = (halfLambert + ilmTex.g) * 0.5;
half ramp = saturate(_ShadowRange - threshold);
ramp = smoothstep(0, _ShadowSmooth, ramp);
diffuse = lerp(_MainColor, _ShadowColor, ramp);
diffuse *= mainTex.rgb;
half3 specular = 0;
half3 halfDir = normalize(worldLightDir + viewDir);
half NdotH = max(0, dot(worldNormal, halfDir));
half SpecularSize = pow(NdotH, _SpecularGloss);
half specularMask = ilmTex.b;
if (SpecularSize >= 1 - specularMask * _SpecularRange)
{
specular = _SpecularMulti * (ilmTex.r) * _SpecularColor;
}
half f = 1.0 - saturate(dot(viewDir, worldNormal));
half rim = smoothstep(_RimMin, _RimMax, f);
rim = smoothstep(0, _RimSmooth, rim);
half3 rimColor = rim * _RimColor.rgb * _RimColor.a;
col.rgb = (diffuse + specular + rimColor) * _LightColor0.rgb;
return col;
}
ENDCG
}
Pass
{
Tags {"LightMode"="ForwardBase"}
Cull Front
CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#include "UnityCG.cginc"
half _OutlineWidth;
half4 _OutLineColor;
struct a2v
{
float4 vertex : POSITION;
float3 normal : NORMAL;
float2 uv : TEXCOORD0;
float4 vertColor : COLOR;
float4 tangent : TANGENT;
};
struct v2f
{
float4 vertColor : TEXCOORD0;
float4 pos : SV_POSITION;
};
v2f vert (a2v v)
{
v2f o;
UNITY_INITIALIZE_OUTPUT(v2f, o);
float4 pos = UnityObjectToClipPos(v.vertex);
float3 viewNormal = mul((float3x3)UNITY_MATRIX_IT_MV, v.tangent.xyz);
float3 ndcNormal = normalize(TransformViewToProjection(viewNormal.xyz)) * pos.w;
float4 nearUpperRight = mul(unity_CameraInvProjection, float4(1, 1, UNITY_NEAR_CLIP_VALUE, _ProjectionParams.y));
float aspect = abs(nearUpperRight.y / nearUpperRight.x);
ndcNormal.x *= aspect;
pos.xy += 0.01 * _OutlineWidth * ndcNormal.xy * v.vertColor.a;
o.pos = pos;
o.vertColor = fixed4(v.vertColor.rgb,1.0);
return o;
}
half4 frag(v2f i) : SV_TARGET
{
return half4(_OutLineColor.rgb * i.vertColor.rgb, 0);
}
ENDCG
}
}
FallBack Off
}