CF474 F. Ant colony


题目传送门:https://codeforces.com/problemset/problem/474/F

题目大意:
给定一串长度为\(n\)的序列\(A\),记子串\([l_i,r_i]\)中,\(v_k+1=\sum\limits_{j=l_i}^{r_i}[A_j\%A_k==0],(l_i\leqslant k\leqslant r_i)\),(\(v_k+1\)是为了包含了自己\(\%\)自己的情况)

现有\(m\)组询问,每次询问子串\([l_i,r_i]\)中,\(v_k\neq r_i-l_i\)的数的个数


考虑什么数才会有\(v_k=r_i-l_i\),显然是\([l_i,r_i]\)所有数的最大公约数

故我们求出\([l_i,r_i]\)的最大公约数后,再求其在\([l_i,r_i]\)中的出现次数即可

一个用线段树维护,一个用主席树维护,码就完事了

/*program from Wolfycz*/
#include
#include
#include
#include
#include
#include
#include
#define Fi first
#define Se second
#define ll_inf 1e18
#define MK make_pair
#define sqr(x) ((x)*(x))
#define pii pair
#define int_inf 0x7f7f7f7f
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline char gc(){
	static char buf[1000000],*p1=buf,*p2=buf;
	return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;
}
templateinline T frd(T x){
	int f=1; char ch=gc();
	for (;ch<'0'||ch>'9';ch=gc())	if (ch=='-')    f=-1;
	for (;ch>='0'&&ch<='9';ch=gc())	x=(x<<1)+(x<<3)+ch-'0';
	return x*f;
}
templateinline T read(T x){
	int f=1; char ch=getchar();
	for (;ch<'0'||ch>'9';ch=getchar())	if (ch=='-')	f=-1;
	for (;ch>='0'&&ch<='9';ch=getchar())	x=(x<<1)+(x<<3)+ch-'0';
	return x*f;
}
inline void print(int x){
	if (x<0)	putchar('-'),x=-x;
	if (x>9)	print(x/10);
	putchar(x%10+'0');
}
const int N=1e5,M=5e6;
int V[N+10],list[N+10];
int gcd(int a,int b){return !b?a:gcd(b,a%b);}
struct S1{
	#define ls (p<<1)
	#define rs (p<<1|1)
	int Tree[(N<<2)+10];
	void update(int p){Tree[p]=gcd(Tree[ls],Tree[rs]);}
	void Build(int p,int l,int r){
		if (l==r){
			Tree[p]=list[V[l]];
			return;
		}
		int mid=(l+r)>>1;
		Build(ls,l,mid);
		Build(rs,mid+1,r);
		update(p);
	}
	int Query(int p,int l,int r,int L,int R){
		if (L<=l&&r<=R)	return Tree[p];
		int mid=(l+r)>>1,res=0;
		if (L<=mid)	res=gcd(res,Query(ls,l,mid,L,R));
		if (R>mid)	res=gcd(res,Query(rs,mid+1,r,L,R));
		return res;
	}
	#undef ls
	#undef rs
}ST;//Segment Tree
int Root[N+10];
struct S2{
	int ls[M+10],rs[M+10],Cnt[M+10],tot;
	void insert(int p,int &k,int l,int r,int x){
		Cnt[k=++tot]=Cnt[p]+1;
		ls[k]=ls[p],rs[k]=rs[p];
		if (l==r)	return;
		int mid=(l+r)>>1;
		if (x<=mid)	insert(ls[p],ls[k],l,mid,x);
		if (x>mid)	insert(rs[p],rs[k],mid+1,r,x);
	}
	int Query(int p,int k,int l,int r,int x){
		if (l==r)	return Cnt[k]-Cnt[p];
		int mid=(l+r)>>1;
		if (x<=mid)	return Query(ls[p],ls[k],l,mid,x);
		if (x>mid)	return Query(rs[p],rs[k],mid+1,r,x);
		return 0;
	}
}CT;//Chairman Tree
int main(){
//	freopen(".in","r",stdin);
//	freopen(".out","w",stdout);
	int n=read(0);
	for (int i=1;i<=n;i++)	list[i]=V[i]=read(0);
	sort(list+1,list+1+n);
	int T=unique(list+1,list+1+n)-list-1;
	for (int i=1;i<=n;i++)	V[i]=lower_bound(list+1,list+1+T,V[i])-list;
	ST.Build(1,1,n);
	for (int i=1;i<=n;i++)	CT.insert(Root[i-1],Root[i],1,T,V[i]);
	int m=read(0);
	for (int i=1;i<=m;i++){
		int l=read(0),r=read(0),res=ST.Query(1,1,n,l,r);
		int pos=lower_bound(list+1,list+1+T,res)-list;
		int Cnt=list[pos]!=res?0:CT.Query(Root[l-1],Root[r],1,T,pos);
		printf("%d\n",r-l+1-Cnt);
	}
	return 0;
}

相关