【Luogu P3426】[POI2005]SZA-Template


链接:

洛谷

题目大意:

给定一个字符串 \(s\),找到最小的 \(t\) 使得 \(t\) 匹配的位置能覆盖 \(s\)

思路:

\(t\) 一定是 \(s\) 的一个前后缀(\(s\) 也算),考虑 DP。设 \(f_i\) 表示前缀 \(i\) 的答案,那么 \(f_i\) 要么是 \(i\),要么是 \(f_{\mathrm{border}(i)}\)。那么如果是 \(f_{\mathrm{border}(i)}\),那么某个 \(f_j=f_{\mathrm{border}(i)}\) 一定在 \([i-\mathrm{border}(i),i]\) 内。

代码:

const int N = 5e5 + 10;

inline ll Read() {
	ll x = 0, f = 1;
	char c = getchar();
	while (c != '-' && (c < '0' || c > '9')) c = getchar();
	if (c == '-') f = -f, c = getchar();
	while (c >= '0' && c <= '9') x = (x << 3) + (x << 1) + c - '0', c = getchar();
	return x * f;
}

char s[N];
int nxt[N], f[N], g[N];;

int main() {
//	freopen(".in", "r", stdin);
//	freopen(".out", "w", stdout);
	scanf ("%s", s + 1);
	int n = strlen (s + 1);
	for (int i = 2, j = 0; i <= n; i++) {
		while (j && s[i] != s[j + 1]) j = nxt[j];
		if (s[i] == s[j + 1]) j++;
		nxt[i] = j;
	}
	for (int i = 1; i <= n; i++) {
		f[i] = i;
		if (g[f[nxt[i]]] >= i - nxt[i]) f[i] = f[nxt[i]];
		g[f[i]] = i;
	}
	printf ("%d\n", f[n]);
	return 0;
}