BitMask 相关
318. Maximum Product of Word Lengths
Given a string array words
, return the maximum value of length(word[i]) * length(word[j])
where the two words do not share common letters. If no such two words exist, return 0
.
Example 1:
Input: words = ["abcw","baz","foo","bar","xtfn","abcdef"] Output: 16 Explanation: The two words can be "abcw", "xtfn".
Example 2:
Input: words = ["a","ab","abc","d","cd","bcd","abcd"] Output: 4 Explanation: The two words can be "ab", "cd".
Example 3:
Input: words = ["a","aa","aaa","aaaa"] Output: 0 Explanation: No such pair of words.
Constraints:
2 <= words.length <= 1000
1 <= words[i].length <= 1000
words[i]
consists only of lowercase English letters.
暴力解法
class Solution { public int maxProduct(String[] words) { int max = 0; for(int i=0;i){ for(int j=i+1;j ){ if(!hasCommon(words[i],words[j])) max = Math.max(max,words[i].length()*words[j].length()); } } return max; } private boolean hasCommon(String w1,String w2){ for(char c : w1.toCharArray()){ if(w2.indexOf(c)>=0) return true; } return false; } }
巧用bitmask,将 字符串比对 过程从O(len2) 到 O(1), 最终时间复杂度: O(N*N+L) N为字符串个数,L为字符串长度
class Solution { public int maxProduct(String[] words) { int max = 0; int[] state = new int[words.length]; for(int i=0;i){ state[i] = getState(words[i]); } for(int i=0;i ){ for(int j=i+1;j ){ if( (state[i] & state[j]) ==0 ) max = Math.max(max,words[i].length()*words[j].length()); } } return max; } private int getState(String str){ int mask = 0; for(char c:str.toCharArray()){ int pos = c-'a'; mask |= 1<<(pos); } return mask; } }
bitmask 基础上增加 map对重复字符串集合进行去重,减少比对次数
class Solution { public int maxProduct(String[] words) { int max = 0; Map1461. Check If a String Contains All Binary Codes of Size K Mediummap = new HashMap(); for(int i=0;i ){ int bitValue = getState(words[i]); map.put(bitValue, Math.max(map.getOrDefault(bitValue,0), words[i].length())); } int result = 0; for(int i:map.keySet()){ for(int j:map.keySet()){ if( i!=j && ( (i & j) == 0)) result = Math.max(result, map.get(i)*map.get(j)); } } return result; } private int getState(String str){ int mask = 0; for(char c:str.toCharArray()){ int pos = c-'a'; mask |= 1<<(pos); } return mask; } }
Given a binary string s
and an integer k
, return true
if every binary code of length k
is a substring of s
. Otherwise, return false
.
Example 1:
Input: s = "00110110", k = 2 Output: true Explanation: The binary codes of length 2 are "00", "01", "10" and "11". They can be all found as substrings at indices 0, 1, 3 and 2 respectively.
Example 2:
Input: s = "0110", k = 1 Output: true Explanation: The binary codes of length 1 are "0" and "1", it is clear that both exist as a substring.
Example 3:
Input: s = "0110", k = 2 Output: false Explanation: The binary code "00" is of length 2 and does not exist in the array.
Constraints:
1 <= s.length <= 5 * 105
s[i]
is either'0'
or'1'
.1 <= k <= 20
关键点:使用二进制移位,保持滑动窗口的值
class Solution { public boolean hasAllCodes(String s, int k) { int len = 1<<k; boolean[] stats = new boolean[len]; int allOne = len-1; int curr = 0; for(int i=0;i){ int flag = s.charAt(i)-'0'; curr = ( (curr<<1) & allOne ) + flag; if(i>=k-1){ stats[curr] = true; } } for(int i=0;i ){ if(!stats[i]) return false; } return true; } }
class Solution { public boolean hasAllCodes(String s, int k) { int len = 1<<k; boolean[] stats = new boolean[len]; int allOne = len-1; int curr = 0; for(int i=0;i){ int flag = s.charAt(i)-'0'; curr = ( (curr<<1) & allOne ) + flag; if(i>=k-1 && !stats[curr]){ len--; stats[curr] = true; if(len==0) return true; } } return false; } }