卢卡斯定理
预处理阶乘。
C(n,m)%p=C(n/p,m/p)*C(n%p,m%p)%p, 即也就是Lucas(n,m)%p=Lucas(n/p,m/p)*C(n%p,m%p)%p
m! * (n - m)! 关于p的逆元就是m! * (n - m)!的p-2次方。
#includeusing namespace std; using ll = long long; constexpr int MAXN = 1000005; constexpr int inf = 0x3f3f3f3f; constexpr int mod = 998244353; ll powmod(ll a, ll b, ll p) { ll res = 1; a %= p; while (b) { if (b & 1) { res *= a; res %= p; } a *= a, a %= p; b >>= 1; } return res; } ll inv(ll m, ll p) { return powmod(m, p - 2, p); } ll C(ll n, ll m, ll p) { if (m > n) return 0; ll up = 1, down = 1; for (int i = n - m + 1; i <= n; ++i) up *= i, up %= p; for (int i = 1; i <= m; ++i) down *= i, down %= p; return up * inv(down, p) % p; } ll Lucas(ll n, ll m, ll p) { if (m == 0) return 1; return C(n % p, m % p, p) * Lucas(n / p, m / p, p) % p; }