多项式求逆
多项式求逆
多项式求逆指的是给定一个多项式\(F(x)\),求出一个多项式\(G(x)\)满足
\[F(x)*G(x)\equiv1\pmod {x^n} \]它是怎么做的?
我们称一个多项式的“度”为其最高次项系数\(+1\)
首先,我们知道当\(n=1\)的时候,显然\(G(x)\)即为\(F(x)\)的常数项之逆元
我们将原式写成模\(x^{\lceil\frac n 2\rceil}\)意义下的形式:
\[F(x)*G(x)\equiv1\pmod {x^{\lceil\frac n 2\rceil}} \]假设我们已经求出\(B(x)\)满足
\[F(x)*B(x)\equiv1\pmod {x^{\lceil\frac n 2\rceil}} \]将两个式子相减
\[G(x)-B(x)\equiv0\pmod{x^{\lceil\frac n 2\rceil}} \]平方一下
\[G^2(x)-2G(x)B(x)+B^2(x)\equiv0\pmod{x^n} \]两边乘上\(F(x)\)
\[G(x)-2B(x)+F(x)B^2(x)\equiv0\pmod{x^n} \](这里由于\(F(x)*G(x)\equiv1\pmod{x^n}\),消去了一些部分)
移项整理得
\[G(x)\equiv(2-F(x)B(x))B(x)\pmod{x^n} \]多项式乘法可以用FFT/NTT加速
Code
#include
#include
#include
#include
#include
#include
#define inv(x) (fastpow((x),mod-2))
using namespace std;
typedef long long ll;
template void read(T &t)
{
t=0;int f=0;char c=getchar();
while(!isdigit(c)){f|=c=='-';c=getchar();}
while(isdigit(c)){t=t*10+c-'0';c=getchar();}
if(f)t=-t;
}
const ll mod=998244353,gg=3,ig=332748118;
const int maxn=100000+5;
int n;
ll a[maxn<<2],b[maxn<<2];
ll fastpow(ll a,ll b)
{
ll re=1,base=a;
while(b)
{
if(b&1)
re=re*base%mod;
base=base*base%mod;
b>>=1;
}
return re;
}
int len;
int r[maxn<<2];
void NTT(ll *f,int type)
{
for(register int i=0;i>1;
ll unr=fastpow(type?gg:ig,(mod-1)/p);
for(register int l=0;l>1,a,b);
for(len=1;len<=(deg<<1);len<<=1);
for(register int i=0;i>1]>>1)|((i&1)?len>>1:0);
c[i]=(i
相关