传送门
每次往集合里面添加一段连续区间的数,然后询问当前集合内的中位数。
思路很好想,但是卡内存。
当时写的动态开点线段树没卡过去,赛后机房大佬用动态开点过了,\(tql\)。
卡不过去就只能离散化加左闭右开线段树写了。
#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; typedef long long LL; typedef pair pLL; typedef pair pLi; typedef pair pil;; typedef pair pii; typedef unsigned long long uLL; #define lson (rt<<1),L,mid #define rson (rt<<1|1),mid + 1,R #define lowbit(x) x&(-x) #define name2str(name) (#name) #define bug printf("*********\n") #define debug(x) cout<<#x"=["<> 1; lazy[rt<<1] += x, lazy[rt<<1|1] += x; sum[rt<<1] += 1LL * x * (num[mid+1]-num[l]); sum[rt<<1|1] += 1LL * x * (num[r+1]-num[mid+1]); } void update(int l, int r, int rt, int L, int R) { if(l <= L && R <= r) { sum[rt] += num[R+1] - num[L]; ++lazy[rt]; return; } push_down(rt, L, R); int mid = (L + R) >> 1; if(r <= mid) update(l, r, lson); else if(l > mid) update(l, r, rson); else { update(l, mid, lson); update(mid + 1, r, rson); } push_up(rt); } int query(LL all, int rt, int L, int R) { if(L == R) { LL pos = sum[rt] / (num[R+1] - num[L]); pos = num[L] + (all - 1) / pos; return pos; } push_down(rt, L, R); int mid = (L + R) >> 1; if(sum[rt<<1] >= all) return query(all, lson); else return query(all - sum[rt<<1], rson); } int main() { #ifndef ONLINE_JUDGE FIN; #endif scanf("%d", &n); scanf("%d%d%d%d%d%d", &x, &xx, &a1, &b1, &c1, &m1); scanf("%d%d%d%d%d%d", &y, &yy, &a2, &b2, &c2, &m2); L[1] = min(x, y) + 1, R[1] = max(x, y) + 1; L[2] = min(xx, yy) + 1, R[2] = max(xx, yy) + 1; num[++tot] = L[1], num[++tot] = R[1] + 1; num[++tot] = L[2], num[++tot] = R[2] + 1; for(int i = 3; i <= n; ++i) { int num1 = ((1LL * a1 * xx % m1 + 1LL * b1 * x % m1) % m1 + c1) % m1; int num2 = ((1LL * a2 * yy % m2 + 1LL * b2 * y % m2) % m2 + c2) % m2; L[i] = min(num1, num2) + 1, R[i] = max(num1, num2) + 1; x = xx, xx = num1; y = yy, yy = num2; num[++tot] = L[i], num[++tot] = R[i] + 1; } sort(num + 1, num + tot + 1); tot = unique(num + 1, num + tot + 1) - num - 1; LL all = 0; for(int i = 1; i <= n; ++i) { all += R[i] - L[i] + 1; L[i] = lower_bound(num + 1, num + tot + 1, L[i]) - num; R[i] = lower_bound(num + 1, num + tot + 1, R[i] + 1) - num; update(L[i], R[i]-1, 1, 1, tot); printf("%d\n", query((all + 1) /2, 1, 1, tot)); } return 0; }