2018 CCPC-Final K - Mr. Panda and Kakin
\(c\equiv FLAG^{2^{30}+3} ~~ (mod~~n)\)
给定\(c\)和\(n\),\(n\)为两接近的素数乘积,求\(FLAG\)
\(RSA\):
- 寻找两个质数\(p\),\(q\),令\(n=p*q\)
- 计算欧拉函数\(\varphi(n)=(p-1)*(q-1)\)
- 寻找公钥\(e\),满足\(1< e < \varphi(n)\)且\(e\)与\(\varphi(n)\)互质
- 计算私钥\(d\),\(e*d\equiv 1 ~~ (mod ~~ \varphi(n))\)
若\(c\)为密文,\(m\)为明文
加密:\(c=m^e ~ mod ~ n\)
解密:\(m=c^d ~ mod ~ n\)
#include
using namespace std;
typedef long long ll;
ll mul(ll u, ll v, ll p) {
return (u * v - ll((long double)u * v / p) * p + p) % p;
}
ll qpow(ll x, ll y, ll mod) {
ll ans = 1;
for (; y; y >>= 1, x = mul(x, x, mod))
if (y & 1) ans = mul(ans, x, mod);
return ans;
}
ll extend_gcd(ll a, ll b, ll &x, ll &y) {
if (a == 0 && b == 0) return -1;
if (!b) {
x = 1, y = 0;
return a;
}
ll d = extend_gcd(b, a % b, y, x);
y -= a / b * x;
return d;
}
ll inv(ll a, ll n) {
ll x, y;
ll d = extend_gcd(a, n, x, y);
if (d == 1) return (x % n + n) % n;
return -1;
}
int main() {
int t;
ll n, c;
scanf("%d", &t);
for (int _ = 1; _ <= t; _++) {
scanf("%lld%lld", &n, &c);
ll qn = sqrt(n), q, p;
while (1) {
if (n % qn == 0) {
q = qn;
p = n / q;
break;
}
qn--;
}
ll phi = (q - 1) * (p - 1);
ll d = inv(1073741827ll, phi);
printf("Case %d: %lld\n", _, qpow(c, d, n));
}
return 0;
}