#KM算法#UVA1411 Ants
题目
在一个平面直角坐标系中,有 \(n\) 个黑点,\(n\) 个白点。
给出一种二分图匹配的方案,使得没有两条由黑白点连接的线段相交
分析
如果线段都不相交,根据三角形的两边之和大于第三边,那么线段的长度之和一定是最小的。
那么这道题就转化成二分图最大权完美匹配,用KM算法写就可以了。
代码
#include
#include
#include
#include
using namespace std;
const int N=111; bool vx[N],vy[N];
typedef double db; queueq;
db slack[N],lx[N],ly[N],G[N][N];
int px[N],py[N],link[N],n,x[N],y[N];
int iut(){
int ans=0,f=1; char c=getchar();
while (!isdigit(c)) f=(c=='-')?-f:f,c=getchar();
while (isdigit(c)) ans=ans*10+c-48,c=getchar();
return ans*f;
}
void print(int ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
db min(db a,db b){return ab?a:b;}
void adjust(int y){
for (int _y;y;y=_y){
_y=px[link[y]];
px[link[y]]=y;
py[y]=link[y];
}
}
void bfs(int st){
for (int i=1;i<=n;++i) slack[i]=1e12,vx[i]=vy[i]=0;
while (!q.empty()) q.pop();
q.push(st);
while (1){
while (!q.empty()){
int x=q.front();
vx[x]=1,q.pop();
for (int y=1;y<=n;++y)
if (!vy[y]&&slack[y]>lx[x]+ly[y]-G[x][y]){
slack[y]=lx[x]+ly[y]-G[x][y],link[y]=x;
if (!slack[y]){
vy[y]=1;
if (!py[y]) {adjust(y); return;}
else q.push(py[y]);
}
}
}
db mn=1e12;
for (int i=1;i<=n;++i)
if (!vy[i]) mn=min(mn,slack[i]);
for (int i=1;i<=n;++i){
if (vx[i]) lx[i]-=mn;
if (vy[i]) ly[i]+=mn;
else slack[i]-=mn;
}
for (int i=1;i<=n;++i)
if (!vy[i]&&!slack[i]){
vy[i]=1;
if (!py[i]) {adjust(i); return;}
else q.push(py[i]);
}
}
}
void KM(){
for (int i=1;i<=n;++i){
link[i]=ly[i]=px[i]=py[i]=0,lx[i]=-1e12;
for (int j=1;j<=n;++j)
lx[i]=max(lx[i],G[i][j]);
}
for (int i=1;i<=n;++i) bfs(i);
}
int o(int x){return x*x;}
int main(){
while (scanf("%d",&n)==1){
for (int i=1;i<=n;++i)
x[i]=iut(),y[i]=iut();
for (int j=1;j<=n;++j){
int X=iut(),Y=iut();
for (int i=1;i<=n;++i)
G[i][j]=-sqrt(o(X-x[i])+o(Y-y[i]));
}
KM();
for (int i=1;i<=n;++i)
print(px[i]),putchar(10);
putchar(10);
}
return 0;
}