"""
Created on 2020/11/17 20:02.
@Author: yubaby@anne
@Email: yhaif@foxmail.com
"""
import tensorflow as tf
from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D, Dropout, BatchNormalization, Activation
from tensorflow.keras.layers import Conv2DTranspose, Add, Concatenate, concatenate
from tensorflow.keras import Model
def build_model():
inputs = Input(shape=(tif_size, tif_size, 1))
# Block1
x = Conv2D(64, (3, 3), padding='same', name='block1_conv1')(inputs)
x = BatchNormalization()(x)
x = Conv2D(64, (3, 3), padding='same', name='block1_conv2')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)
# Block 2
x = Conv2D(128, (3, 3), padding='same', name='block2_conv1')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv2D(128, (3, 3), padding='same', name='block2_conv2')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)
# Block 3
x = Conv2D(256, (3, 3), padding='same', name='block3_conv1')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv2D(256, (3, 3), padding='same', name='block3_conv2')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv2D(256, (3, 3), padding='same', name='block3_conv3')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)
# Block 4
x = Conv2D(512, (3, 3), padding='same', name='block4_conv1')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv2D(512, (3, 3), padding='same', name='block4_conv2')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv2D(512, (3, 3), padding='same', name='block4_conv3')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)
# Block 5
x = Conv2D(512, (3, 3), padding='same', name='block5_conv1')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv2D(512, (3, 3), padding='same', name='block5_conv2')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv2D(512, (3, 3), padding='same', name='block5_conv3')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)
pool5 = x
x = Conv2D(4096, (7, 7), padding='same', name='fc1')(pool5)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Dropout(0.5)(x)
x = Conv2D(4096, (1, 1), padding='same', name='fc2')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Dropout(0.5)(x)
x = Conv2DTranspose(
filters=class_num, kernel_size=(32, 32), strides=(32, 32),
padding='valid', activation=None
)(x)
x = Conv2D(
filters=class_num, kernel_size=(1, 1), strides=(1, 1),
padding='same', activation='softmax'
)(x)
mymodel = Model(inputs, x)
return mymodel